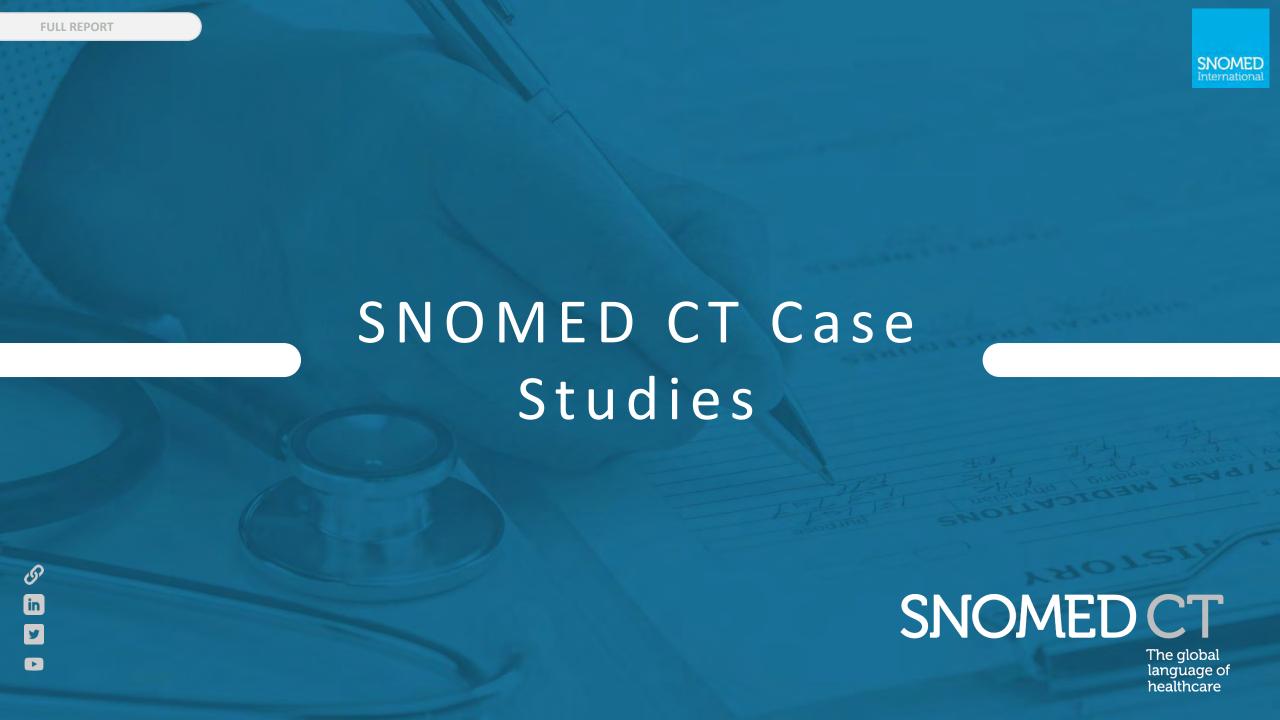


SNOMED CT

The case for investment

SMOMED CT

The global language of healthcare



September 2021

SNOMED CT 4 Case Studies 5

4 Purpose and Approach

5 Overview & Timeline

Summary & Detailed

6 Summary Case Studies

- 8 Veterans Health Administration
- 19 Kaiser Permanente
- 37 North York General Hospital
- 42 Barts NHS Trust and the ELHCP
- 61 Cambridge University Hospital NHS Foundation Trust
- 75 Northern Queensland PHN & MacKay Hospital & Health Service
- 80 University of Nebraska Medical Center
- 86 OHDSI
- 93 Honghu Public Health Surveillance System
- 99 AEHRC & CSIRO Australia

116 Contact us

For more information, contact our dedicated Customer and Stakeholder Relationship Management team.

Contents

Case Studies

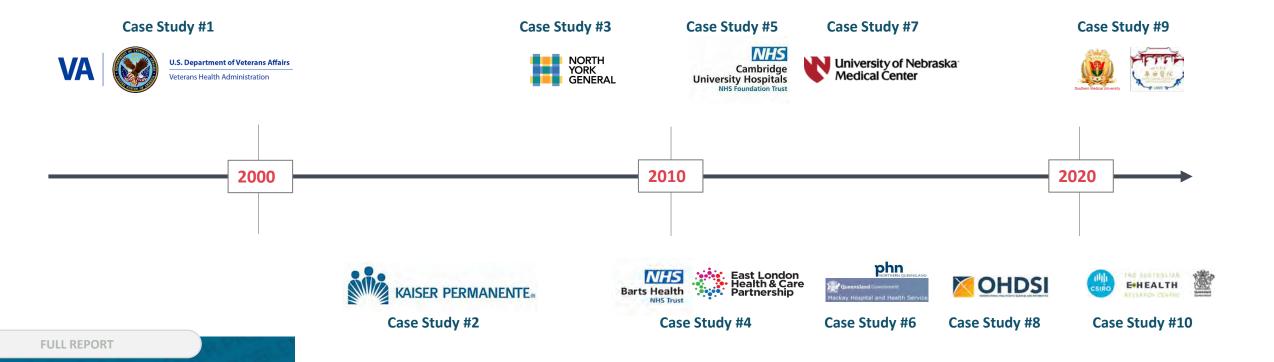
Purpose and approach

SNOMED International

- 1. The objective is to develop ten case studies that cover the six domains data entry and integration through to research and can demonstrate how SNOMED CT is used.
- 2. Each detailed case study provides an overview of the organization involved, the use of SNOMED CT and the benefits realized.
- 3. The case studies are not equivalent in scope, scale and/or benefits achieved.
- 4. The benefits achieved In each case study are shown as patient service outcomes and patient health outcomes as outlined in the SNOMED International Vision.
- 5. The benefits described in the case studies are also used to validate the assumptions, and in some instances the data points, in the benefits model and the economic analysis.
- 6. The Case Studies-at-a-Glance are summarized in this section of the final report. The detailed Case Studies are provided in Appendix 2.

Case Studies

Overview of the ten case studies


S n	Case Study	Data Entry and Integration	Clinical Information Sharing	Point of Care Analytics	Population Analytics	Management Analytics	Research
	1. Veterans Health Administration						
	2. Kaiser Permanente						
	3. North York General Hospital						
	4. BARTS and ELHCP						
	5. University of Cambridge Hospitals						
	6. Northern Queensland PHN and Mackay H&HS						
	7. University of Nebraska Medical Centre						
	8. OHDSI						
	9. Honghu Public Health Surveillance						
	10. AEHRC and CSIRO Artificial Intelligence						

SNOMED International

Case Studies

An approximate timeline

The timeline below depicts the approximate starting point over the past twenty-plus years for each of the ten case studies: pre-2000; 2000-2009; 2010-2019; 2020 and beyond. Each Case Study is presented in the order of deployment.

SNOMED CT

A Demonstrated Case for Investment: Real World Use

Veterans Health Administration: the cost benefit analysis of the SNOMED CT-embedded VistA system, as well as the benefits derived from the Veterans Health Information Exchange (VHIE).

Kaiser Permanente: the benefits derived from a SNOMED CT-embedded HealthConnect clinical information system and patient portal, as well as analytics and research

AEHRC and CSIRO (Australia): a look into the current and future possibilities for SNOMED CT use in artificial intelligence.

Honghu Public Health Surveillance (COVID-19): a description of the SNOMED-CT-embedded Honghu Hybrid System that supported policy makers and public health officials with COVID-19 surveillance and control.

OHDSI: the SNOMED CT-embedded OMOP CDM, and the benefits obtained from research projects using the OHDSI research collaborative.

SNOMED CT – embedded Clinical Information Systems, Health Data & Analytics Platforms and Interoperability Solutions

North York General Hospital: the benefits obtained from a SNOMED CT-embedded *eCare* clinical decision support system.

Barts NHS Trust and the East London Health and Care
Partnership: the benefits derived from a SNOMED CTembedded Cerner clinical information system and a regional
EHR and data & analytics platform.

University of Cambridge Hospitals NHS Foundation Trust: the benefits derived from a SNOMED CT-embedded *eHospital* clinical information system, patient portal and a health data & analytics platform.

University of Nebraska Medical Centre: the benefits obtained from the SNOMED CT-embedded i2B2 data warehouse and its use for clinical and translational research.

Northern Queensland Primary Health Network and the Mackay Hospital and Health Service: an economic evaluation of the Mackay SNOMED CT-embedded HealthPathways implementation.

Case for Investment

Case Studies

Business Transformation

VistA

VistA Cost Benefit Analysis

VHIE

Veterans Health Administration In the mid 1990's, CEO Dr. Ken Kizer set out to transform the VHA "from a hospital system to a health care system". Technology use was a key component of the transformation, leading at that time, to the world's largest deployment of an integrated clinical information system (VistA), including SNOMED CT.

The SNOMED CT–embedded VistA clinical information system and patient portal was custom-developed and implemented at a cost of USD\$3.6 billion. VistA is currently used in 1,250 health care facilities, has over 450,000 users, and routinely has had the highest user satisfaction levels among U.S. clinical information systems.

A cost benefit analysis for the VistA deployment was completed for the period 2004-2007:

- Adoption and Use Near 100% adoption and use of the SNOMED CT-embedded VistA EHR across all VHA facilities.
- **Benefits** Benefits realized were primarily due to the reduction of adverse drug events (65%) and duplicate testing (27%) and productivity gains (e.g. elimination of chart pulls, reduction in order processing time).
- **Net Value** The breakeven point for the VistA EHR investment occurred in 2003. By 2007 the net value exceeded \$687 million per year, with annual benefits being three times greater than annual costs.
- **Comparative Performance** the VHA out-performed the U.S. private healthcare system in the control of diabetes, including glucose testing compliance (15% higher), cholesterol control (17% higher), and more timely retinal exams.

The Veterans Health Information Exchange (VHIE) was deployed to enable care coordination via system interoperability, using SNOMED CT-supported Continuity of Care documents that are shared among 220 participating providers nation-wide. The VHIE has resulted in an eight-fold increase in the allergy documentation rate, a reduction in travel for veterans to receive immunizations, and a reduction in CBC & renal profile ordering, liver tests and imaging orders.

For the detailed Veterans Health Administration Case Study see Appendix 2 here

A Clinical Information System and Health Information Exchange

> Table of Contents

VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

- The Veterans Health Administration (VHA), one of three administrations within the Department of Veterans Affairs (VA), is the largest integrated health system in the United States. The VHA is a form of nationalized healthcare service that provides health care benefits and services to military Veterans. As a result all the medical facilities that are part of the VHA are owned by the US Government and all the doctors and workers at the facilities are paid by the government.
- In 2020 the VHA employed approximately 350,000 people including over 150,000 medical professionals who provide or support care at 1,255 health care facilities, including 170 medical centers and 1,074 outpatient clinics, serving 9 million enrolled Veterans each year. The 2020 VHA budget is USD\$85 billion.
- In 1996, the Veterans Health Care Eligibility Reform Act enabled the VHA to be restructured "from a hospital system to a health care system," as directed by then Under Secretary for Health, Kenneth W.Kizer, MD. Dr. Kizer changed the organization from the previously independent and often competing large hospital medical centers to 22 integrated service networks providing patient-centred care¹.
- <u>Change in Care Settings</u> the transformation facilitated shifting care from the hospital to ambulatory-care facilities and the home environment, allowing a reduction of authorized hospital and long-term care beds from approximately 92,000 to 53,000, with a concomitant decrease in hospitalizations and an increase in ambulatory-care visits and home care services.
- <u>Increase in Patient Throughput</u> From 1996 to 2003, the number of veterans treated annually increased by 75% from approximately 2.8 to 4.9 million, but only with a ~5% annual increase in budget over the same period.

VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

- As part of this major transformative effort Kizer and the VHA made significant enhancements to its existing **SNOMED CT**-embedded (e.g. problem list, anatomic pathology, health summary) system called VistA. VistA is very comprehensive and supports all clinical, administrative, and financial functions across the VHA for over 450,000 users.
- Clinically, VistA provides a single patient record across all VHA health care facilities and with new CPOE and clinical decision support capabilities implemented in the late 1990's, 94% of all pharmacy orders throughout the VHA were electronically entered directly by the prescriber. In addition, the VHA in the early 2000s introduced My *HealtheVet* that allows veterans to access and update their personal health record, refill prescriptions, schedule appointments, as well as port their health records to institutions outside the VHA health system or keep a personal copy of their health records.
- VistA is a custom built solution that consists of 180 clinical, financial, and administrative applications integrated within a single transactional database. Over 65% of all physicians trained in the U.S. rotate through the VHA and use VISTA, making VistA the most familiar EHR in the U.S. It has continually won awards and in 2014, and again in 2016, national surveys of over 15,000 physician users of EHRs rated VistA with the highest overall satisfaction rating in the U.S².
- The VistA applications have been placed in the public domain and as an open-source system has been used by other US health care organizations (e.g. Department of Defense Military Health System, Indian Health Service and other non-government hospitals), as well as internationally in at least 15 countries. In 2018 the VHA contracted Cerner to replace VistA as part of a 10-year, \$16 billion implementation project with rollout expected to start in 2021 (COVID delayed).

^{2.} Peckham C, Kane L, Rosensteel S (August 25, 2016). "Medscape EHR Report 2016: Physicians Rate Top EHRs". Medscape. Retrieved August 27, 2017. See https://www.medscape.com/features/slideshow/public/ehr2016

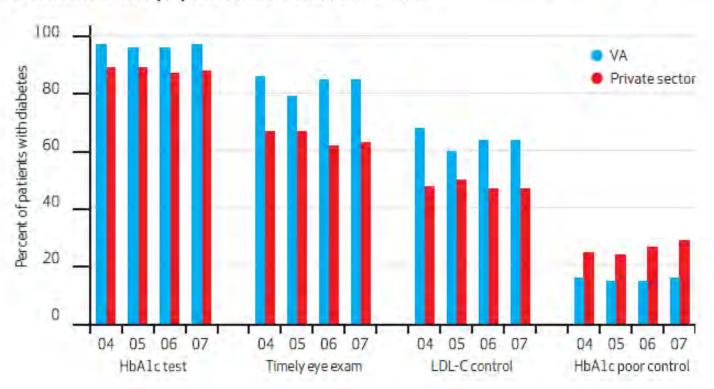
VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

VistA Cost-Benefit Analysis

- Byrne et al³ compared health information technology in the VHA to norms in the US private health care sector, plus estimated the costs and benefits of selected VistA applications for the period 2004 to 2007.
- Health IT Spending: On average, the VHA has higher ratios of health IT total spending and IT operations and maintenance costs than the private health care sector. For capital expenses, the VHA is at or below the industry averages.
- Adoption of Health IT: The VA achieved close to 100 percent adoption of selected VistA components (e.g. CPRS or the Computerized Patient Record System) since 2004. In contrast, the private health care sector had not reached significant adoption of any of these applications. In 2007, adoption in the private health care sector of inpatient electronic health records stood at 61 percent; use of inpatient bar-code medication administration was 22 percent; computerized physician order entry adoption was 16 percent; and outpatient electronic medical record adoption 12 percent.
- IT-Related Quality Measure Performance: For preventive care process measures such as cancer screenings, the VHA had higher performance during 2004–2007 relative to the private health care sector. VHA patients with diabetes had better glucose testing compliance (15% higher), more controlled cholesterol (17% higher), and more timely retinal exams when compared to the Medicare health maintenance organization (HMO) private-sector benchmark (see the details on the chart overleaf).

Bryne et al., "The Value From Investments In Health Information Technology At The U.S. Department Of Veterans Affairs", Health Affairs 29, No. 4., 2010. See https://www.healthaffairs.org/doi/pdf/10.1377/hlthaff.2010.0119



VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

Selected Outpatient Health Information Technology (IT)-Related Quality Measures For Patients With Diabetes, Department Of Veterans Affairs (VA) And Private Sector, 2004-2007

VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

VistA Cost-Benefit Analysis con't

- <u>Net Value</u>: The total <u>net value</u> of the VHA's investments in the VistA components modeled exceeds \$3.09 billion. By 2003, the benefit projections equaled the costs, with the VHA potentially accruing a net positive value from 2004 through 2007. In 2007, the annual net value was estimated to exceed \$687 million, with annual benefits projected to be threefold greater than annual costs.
- <u>Benefits:</u> The gross value of the VHA's investments in VistA applications was projected to be \$7.16 billion. Cumulative reductions in unnecessary care attributable to prevention of adverse drug event—related hospitalizations and outpatient visits as a result of VistA was the largest source of benefit in the projections, with an estimated value of \$4.64 billion, or 65 percent of total estimated value. The cumulative value of eliminated redundancies (e.g. duplicate laboratory tests) accounted for \$1.92 billion, or 27 percent of projected value. (see more detail in the chart overleaf)
- <u>Costs:</u> The total cost to develop, implement, and maintain the VistA applications, including the Computerized Patient Record System, was estimated at \$4.07 billion. The Computerized Patient Record System entailed the largest investment of the VistA applications analyzed, with projected costs of \$3.60 billion (which includes \$1.56 billion for the earlier Decentralized Hospital Computer Program). The bar-code medication administration, picture archiving and communication systems, and Laboratory Electronic Data Interoperability application were comparatively smaller investments, collectively equaling \$470 million.

VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

Cost Benefit Analysis - VistA Applications and Sources of Value								
VistA Component	System Feature	Source of Value	Benefit Category					
Computerized Patient Record System (CPRS; 1997– 2007; inpatient, outpatient)	 Electronic capture and reporting of allergies/adverse reactions, problem lists, inpatient and outpatient medications, test results, discharge summaries, provider notes, notifications/patient record flags Orders for medications, laboratory tests, radiology tests, event delay, diets, consult/request tracking Clinical decision support through clinical reminders, order checking. 	 Reduced inpatient costs for preventable adverse drug events caused by inpatient medications Reduced inpatient costs for avoided influenza and pneumonia Reduced inpatient costs for preventable adverse drug events caused by outpatient medications Reduced outpatient visit costs for preventable adverse drug events caused by outpatient medications Reduced laboratory and radiology costs for redundant and unnecessary tests Reduced time spent on chart pulls by file clerks in the inpatient setting Reduced time spent on chart pulls by file clerks in the outpatient setting 	 Avoided utilization Avoided utilization Avoided utilization Avoided utilization Eliminated redundancy Reduced workload Reduced workload 					
Picture archiving and communication system (2002–2007; inpatient)	 Exam lists, exam locks, specialized display tools, results-routing capabilities, color imaging, 3D imaging 	 Reduced radiological film supply costs Reduced film processor maintenance costs Reduced time spent on film processing by radiology department clerks Reduced floor-space costs for film library 	Decreased expensesDecreased expensesReduced workloadReduced expenses					
Bar-code medication administration (1998– 2007; inpatient)	Real-time, point-of-care validation for administration of unit dose and IV medications	Reduced inpatient costs for preventable adverse drug events caused by inpatient medication administration errors	Avoided utilization					
Laboratory Electronic Data Interoperability (2001– 2007; inpatient and outpatient)	 Laboratory order sending and tracking, results transmission and integration into CPRS, standardized electronic communication with non- VistA laboratories 	Reduced time spent on order processing by VA laboratory technicians	Reduced workload					

VistA: A Clinical Information System

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

Veterans Health Information Exchange

- Because the majority of Veterans receive care at both VHA and private health care facilities, the VHA set up a Veterans Health Information Exchange (VHIE)⁴ to support interoperability between the VHA, other federal agencies and the private health care sector to better manage the coordination of care.
- Currently the VHA and over 220 participating providers can electronically share a variety of health information including: prescriptions and medications, allergies, Illnesses, laboratory and radiology results, immunizations, procedures and clinical notes, and other relevant medical information. The health information, including SNOMED CT encoded information from VistA, is extracted to a Continuity of Care document and exchanged securely with the participating providers.
- The participating providers include federal agencies (e.g. Department of Defense, Social Security Administration), health care organizations (e.g. Kaiser Permanente, Johns Hopkins Medicine), state and regional HIEs (e.g. Indiana Health Information Exchange, Maine HealthInfoNet) and the private sector (e.g. Walgreens Pharmacies, CVS MinuteClinic).
- All VHIE participating providers have to be part of the national HIE, eHealth Exchange, which operates in all 50 states. VHIE can exchange information at both at an organizational level (i.e. Continuity of Care documents via eHealth Exchange) and at the personal provider level (i.e. direct messaging via DirectTrust)⁵. The eHealth Exchange network is the largest HIE in the US and is connected to 75 percent of all US hospitals, to 61 regional or state health information exchanges, and more than 30 EHR technologies (e.g. Epic, Cerner).
- 4. See https://www.va.gov/VHIE/index.asp
- 5. See https://ehealthexchange.org/ and https://www.directtrust.org/

VHIE: A Health Information Exchange

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

Veterans Health Information Exchange

Benefits Achieved

- Allergy Documentation Rate Review of all inbound VHIE transactions in FY14 showed that VHIE use was associated with a nearly eight-fold increase in the allergy documentation rate (7.5% vs. 0.84%)⁶.
- Access to Immunization Services The VHIE Retail Immunization Coordination Project established a partnership between the VHA and Walgreens so Veterans could receive their immunizations at a local Walgreens located closer to their home than their nearest VHA facility. Analysis of Veterans immunized at Walgreens between September 2014 and January 2015 showed that 64% of study Veterans now traveled <5 miles to receive their immunization, 12% of study Veterans traveled between 5 to 10 miles, and 24% of study Veterans traveled more than 10 miles. In addition, it was noted that 93% of Veterans traveled less than 54 miles, the average distance rural Veterans traveled to the nearest VHA facility.
- Laboratory Test an Imaging Ordering Participation in the VHIE reduced the ordering of laboratory and imaging tests at inappropriately short intervals in the ambulatory care setting. CBC & Renal profile ordering was reduced by 1.98%; Lipid and Liver tests by 3.19%; and imaging orders by 1.3%. The effect upon potential overuse was realized early, within the first year of implementation of the VHIE.

^{6.} Pan et al., "Assessments of the Veteran Medication Allergy Knowledge Gap and Potential Safety Improvements with the Veteran Health Information Exchange", AMIA Annual Symposium Proceedings 2012. See https://www.ncbi.nlm.nih.gov/pmc/journals/362/

^{7.} Botts et al., "Improved Veteran Access to Care through the Veteran Health Information Exchange (VHIE) Retail Immunization Coordination Project", AMIA Annual Symposium Proceedings 2016. See https://www.ncbi.nlm.nih.gov/pmc/journals/362/

^{8.} Haggstrom et al., "Impact of VA Health Information Exchange upon the Overuse of Laboratory and Imaging Tests", AMIA Annual Symposium Proceedings 2017. See https://www.ncbi.nlm.nih.gov/pmc/journals/362/

VHIE: A Health Information Exchange

United States – U.S. Department of Veterans Affairs, Veterans Health Administration, Washington DC

Veterans Health Information Exchange

Benefits Achieved con't

- **Diabetes Care** Providers of Veteran patients enrolled in the VHIE had improved access to diabetes data residing in non-VHA health care systems. About 1 in 5 Veteran patients had data identifying diabetes diagnoses in non-VHA clinical systems. However, the VHIE program had no measurable effect upon the quality of diabetes care⁹.
- **Prevalence of Medication Data in Non-VHA health Care Systems** A study was conducted to describe the prevalence of medication dispensing across VHA and non-VHA health care systems among a cohort of Veteran patient population. The data demonstrated that 17.4% of Veterans had medication use identified from non-VHA sources, including prescriptions for antibiotics, antineoplastics, and anticoagulants. These data support the need for the VHIE to improve sharing and coordination of information, with the potential to reduce adverse medication interactions and improve medication safety¹⁰.

^{9.} Haggstrom et al., "Impact of VA Health Information Exchange upon the Quality of Diabetes Care", J Gen Intern Med. 2014 Apr; 29 (Suppl 1).

^{10.} Nguyen et al., "Medication Use among Veterans across Health Care Systems", Appl Clin Inform. 2017 Mar 8; 8(1):235-249

Case for Investment Case Studies

Business Transformation Kaiser Permanente (KP) is the largest nonprofit healthcare plan in the United States, with over 12 million members. In 2002 KP hired George Halvorson as its CEO with the urgent need to integrate care across the entire KP organization by leveraging health information technology, and as a way for KP to obtain a competitive advantage in healthcare delivery.

HealthConnect

KP selected Epic Systems to deploy the HealthConnect clinical information system and the My Health Manager patient portal in all KP locations. The KP HealthConnect deployment became the reference SNOMED CT deployment in the U.S. and globally.

Day 1 Benefits

The use of HealthConnect provided immediate benefits to clinicians and patients:

- Improved patient safety with comprehensive, legible electronic patient health records.
- More efficient inpatient and outpatient care with 24/7 access to complete patient health records.
- Elimination of duplicate tests (e.g. laboratory, radiology) through availability of electronic orders and results.
- Improved patient engagement by KP clinicians demonstrating that "we know you", and patients don't have to repeat the same information about allergies, medications, and other elements of their medical history.

Medium Term Benefits The Harvested Value from the SNOMED CT–embedded HealthConnect system that required policy changes, workflow re-design, committed leadership, and an openness to innovations by knowledgeable clinicians. For example:

- Improved patient safety due to the implementation of level 1 drug-drug interactions.
- Reduced cost of medical records operations.
- Re-engineered workflows to improve quality outcomes while reducing waste and costs. For example, the use of population and management analytics that resulted in a significant drop in patient harm, and an improvement in HEDIS and cost of care rates. By 2009 KP was above the 90th HEDIS percentile across the U.S. for breast and colorectal cancer screening; controlling high blood pressure; cardiovascular LDL control; and diabetes LDL control.

Kaiser Permanente

Long Term Benefits

The Transformation of Care benefits from the SNOMED CT-embedded HealthConnect system included:

- Improved capability to identify, support and disseminate health care innovations, for example: <u>Panel Management</u> resulted in a decrease in office visits, an increase in telephone visits and an increase in secure messaging communications and patient portal interactions. Over a 3-year period physicians saw on average 6% more of their panel of patients, thereby increasing capacity or throughput. Physician work satisfaction increased significantly, and the patient-physician "relationship" measure improved by up to 64%.
- Increased opportunity for collaboration and cultural transformation, for example: Patient Portal clinicians initially felt that patients were not ready to see their health data without the physician acting as an interpreter. A cultural change was needed. This was achieved through the required clinician leadership, communication and collaboration. In addition, KP now uses a 30,000 person virtual advisory group to advise on it My Health Manager patient portal direction.
- The ability to conduct better manage population health, for example: <u>Collaborative Cardiac Care Service</u> (CCCS) was developed by KP Colorado to improve the health of patients with Coronary Artery Disease (CAD). By 2010 CCCS was following over 12,000 CAD patients and demonstrated improvements in cholesterol screening and <u>reduction in low-density lipoprotein cholesterol</u>. The CCCS has achieved a 76% reduction in all-cause mortality associated with CAD in the patients followed by the service.
- Identification and dissemination of best practices and clinical guidelines, for example: KP accelerated its <u>patient safety</u> performance by: closing the loop of diagnostic test results; enhancing CPOE and decision support; creating drug surveillance features and new ways to detect harm. It <u>reduced Ventilator-Associated Pneumonia rates</u> by 60% in the first year and has a sustained reduction of 36%below the pre-intervention rate.
- For the detailed Kaiser Permanente Case Study see Appendix 5 here.

Kaiser Permanente

Health Connect: Enabling the Transformation of Care Delivery

> Table of Contents

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

- Kaiser Permanente (KP) is was founded in 1945 and is made up of three distinct but interdependent groups of entities: the Kaiser Foundation Health Plan, Inc. and its regional operating subsidiaries; Kaiser Foundation Hospitals; and the regional Permanente Medical Groups. KP operates in eight US states (Hawaii, Washington, Oregon, California, Colorado, Maryland, Virginia, and Georgia) and the District of Columbia, and is the largest managed care organizations in the United States.
- Kaiser Permanente is the largest nonprofit healthcare plan in the United States, with over 12 million members. It operates 39 hospitals and more than 700 medical offices, with approximately 300,000 personnel, including more than 85,000 physicians and nurses. In 2019 it had operating revenue of USD\$84.5 billion.
- As one of the nation's earliest adopters of electronic health records (EHRs), KP has achieved organization-wide use and integration of health information technology. HealthConnect, the organization's clinical information system project using the Epic Care EHR was started in 2004, and fully deployed in 2010, for a total cost of around USD\$4 billion.
- The story of the KP HealthConnect implementation is detailed in the book "Connected for Health, Using Electronic Health Records to Transform Care Delivery"¹, the contents of which has been used to create much of this case study.
- KP had a history of digital health excellence that reached back to the 1960's. However, in 2002 KP hired George Halvorson as its CEO with the urgent need to integrate care across the entire KP organization by leveraging health information technology, and provide KP with a competitive advantage in healthcare delivery.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

- In 2003 Halvorson, among other actions, started the transformation effort with the completion of the Board-approved IT business case². To support the HealthConnect investment KP anticipated that use of the EHR system would result in increased efficiencies, improved clinical decision making, better care coordination, reduced medication errors, and new levels of patient engagement. The business case quantifies 36 financial benefits, which fall under the broad categories of reduced operating costs, increased revenues, and reduced capital expenditure. A positive cumulative net cash flow was calculated and a cost-benefit analysis identified a break-even point 8.5 years after the 2004 project initiation.
- The next step was to "start with the end in mind", in this case, value realization by improving the quality of care through the power of evidence. A Blue Sky vision was created that had four themes: Home as a Hub; integration of medical and wellness activities; secure and seamless transitions of care; and care that is customized to the patient. Next came the complete re-design and transformation of the health care delivery processes at KP.
- KP also developed 5 principles for its HealthConnect implementation: business-led; common platforms, processes and services; a preference to buy vs build; a single vendor integrated system; a system that can meet 80% of the KP needs.
- KP selected Epic Systems to deploy HealthConnect in emergency, inpatient, outpatient, laboratories, pharmacy, imaging, public health, membership and financials/benefits areas in all KP locations. It also provided bedside documentation, electronic ordering with clinical decision support, a patient portal (My Health Manager aka MyChart) and a suite of population management tools. KP also became a leader in developing interoperability among US healthcare organizations.

^{2.} Garrido T. et al., "Making the Business Case for Hospital Information Systems – A Kaiser Permanente Investment Decision", Journal of Healthcare Finance, February 2004. https://www.researchgate.net/publication/7896965 Making the Business Case for Hospital Information Systems-A Kaiser Permanente Investment Decision

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

- KP HealthConnect uses an array of international standards, chief among those is **SNOMED CT**. Others include LOINC (lab), DICOM (imaging), RxNorm (drug) and NIC,NOC,NANDA (nursing)³. **SNOMED CT** was chosen over ICD and CPT because it provided a richer, more granular expression of the data that is more familiar to clinicians. Further, coding patient care data using **SNOMED CT** could then be easily leveraged for clinical decision support, clinical and population analytics, as well as public health interventions. Starting in 2010, KP has generously donated its **SNOMED-CT** embedded Convergent Medical Terminology to SNOMED International to benefit all health care providers in the US and globally.
- A key component of the KP HealthConnect deployment was the meaningful involvement of clinicians (e.g. physicians and nurses) from the visioning, vendor selection, clinical process re-design, as well as to the system build, go-live, use and the on-going transformation. It was recognized early that the deployment of KP HealthConnect won't make clinicians necessarily faster in all situations, but they should be better.
- The use of HealthConnect to support the transformation of care delivery at Kaiser Permanente is still viewed by the health care industry as a landmark clinical information system deployment for a large integrated health care system, not just in the U.S., but also globally. Today, a decade later, Kaiser Permanente is recognized as an employer of choice (e.g. a best place to work in IT for the past 10 years), excellence in care (e.g. top scores for quality and service), as well as for its innovative leaders.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

KP took an immediate, medium-term and long-term perspective on realizing the benefits from HealthConnect

1. Day 1 Benefits of HealthConnect (immediate)

The clinical use of HealthConnect provides immediate benefits to clinicians and patients.

- Improved patient safety with comprehensive, legible patient health records.
- More efficient inpatient and outpatient care with 24/7 access to complete patient health records.
- Eliminate duplicate tests (e.g. laboratory, radiology) through availability of orders and results.
- Improve patient engagement by KP clinicians demonstrating that "we know you". Patients don't have to repeat the same information about allergies, medications, and other elements of their medical history.

2. <u>Harvested Value from HealthConnect (medium term)</u>

Many of the benefits of KP HealthConnect have required deliberate policy changes, workflow re-design, committed leadership, and an openness to innovations by knowledgeable clinicians. For example:

- Improved patient safety due to the implementation of level 1 drug-drug interactions.
- Reduced cost of medical records operations.
- · Re-engineered workflows to improve quality outcomes while reducing waste and costs (see two examples overleaf)
- Reduced cost of regulatory compliance and other reporting activities.
- Savings from legacy system retirements.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE I: Re-Engineered Clinical Workflows - KP Hawaii Quality Improvement for Patients with Chronic Kidney Disease

- Specialist nephrologists, such as Dr. Brian Lee at KP Hawaii⁴, were used to managing individual patients that had been referred to them by a GP. Specialists had never been involved in driving improvements in care for, in this case, the entire patient population of 10,000 people with chronic kidney disease.
- Dr. Lee and his colleagues used laboratory results to identify and rank by risk all patients diagnosed with chronic kidney disease.
- Using the **SNOMED CT**-embedded KP HealthConnect Lee then monitored the primary care delivered by primary care clinicians to the most high-risk patients to ensure that it was in line with evidence-based treatment recommendations, and when appropriate, he provided unsolicited e-consults to the patient's GP.
- In effect Dr. Lee inverted the traditional referral process. This required access to patients' electronic records, but also dramatic changes in the relationship between specialists and GPs, including the support of the clinical leadership.
- Results of Lee's initiative showed that it increased early intervention for high-risk patients and reduced by two-thirds the number of late specialist referrals those occurring within the four months of the onset of end-stage renal disease. Early referral is essential to make the changes that will slow the progression of the disease.

^{4.} Lee and Forbes., "The Role of Specialists in Managing the Health of Populations with Chronic Illness: The Example of Chronic Kidney Disease" The British Medical Journal, 2009. See https://www.bmj.com/content/339/bmj.b2395.full

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE II: Re-Engineered Workflows – Population and Management Analytics

- During 2003-2004 the KP Board and senior executives began to look at performance oversight in the areas of quality, service and patent safety. The accountability shift from a position of "we believe we deliver the highest quality care" to "the numbers tell the real story" took time to develop and evolve.
- Three-year, system-wide goals were introduced at KP including the commitment to reach the 90th percentile on all the NCQA HEDIS (Healthcare Effectiveness Data and Information Set)⁵ quality measures and the Joint Commission's National Hospital Inpatient Quality Measures⁶. These objectives were tied to staff compensation and pay-for-performance structures.
- As a result of this focus KP created "Big Q" a organizational dashboard, using management analytics, that reported on quality, service, safety, risk management and resource stewardship in both inpatient and outpatient care settings. The resulting transparency was a catalyst for change.
- The result was a significant drop in patient harm, an improvement in HEDIS and cost of care rates, as well as improvements in hospital and outpatient service performance.
- By the end of 2008 KP was above the 90th HEDIS percentile for breast and colorectal cancer screening; controlling high blood pressure; cardiovascular LDL control; and diabetes LDL control, as well as above the 75th percentile for cervical cancer screening.

- 5. See https://www.ncga.org/hedis/
- 6. See https://www.jointcommission.org/

HealthConnect: Enabling the Transformation of Care Delivery

United States – Kaiser Permanente, Oakland, California

EXAMPLE II: Re-Engineered Workflows – Population and Management Analytics con't

• Following advice from the Institute for Healthcare Improvement the next step for KP in improving transparency was to move beyond the traditional clinical quality perspective and add information on lives saved.

Translating Clinical Metrics to Lives Saved (2004-2008 Q4)						
Metric	Increase	Savings per Decade				
Cholesterol Control	16.8%	1,350 lives				
Blood Pressure Control	36.6%	4,890 lives				
HbA1C < 9.0	7.8%	738 lives				
Smoking Cessation	14%	787 lives				
Breast Cancer Screening	11.3%	565 lives 4,349 Stage 4 cases prevented				
Cervical Cancer Screening	5.8%	38 lives				
Colon Cancer Screening	24.2%	3.838 lives				
TOTAL		12,206 lives saved				

HealthConnect: Enabling the Transformation of Care Delivery

United States – Kaiser Permanente, Oakland, California

EXAMPLE II: Re-Engineered Workflows – Population and Management Analytics con't

• ... and further, information was translated into cost savings or resource stewardship.

Linking Quality Improvements with Financial Outcomes					
Potential Savings from Reducing Harm	Amount				
Estimated Savings from reducing LOS cost for Methicillin-resistant staphylococcus aureus (MRSA), <i>C. Difficile</i> , and urinary tract infections	\$34,000,000				
Estimated savings based on extrapolated CMS costs for coded harm from falls and coded pressure ulcers	\$17,000,000				
Potential savings from medication reconciliation on admission	\$9,000,000				
Annualized savings estimate by reducing costs associated with BSI, VAP and surgical site infections	\$8,000,000				
Conservative savings estimate (10% of admission savings) above from medication reconciliation at admission, discharge and other indirect savings	\$900,000				
Total (projected savings may be incremental because some processes were in place and achieving some impact)	\$68,900,000				

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

3. Transformation of Care enabled by HealthConnect (long term)

The third area of Value Realization was the longer term Transformation of Care supported by HealthConnect.

- Improved capability to identify, support and disseminate health care innovations.
- Increased opportunity for collaboration and cultural transformation.
- Identification and dissemination of best practices and clinical guidelines.
- The ability to conduct better manage population health.
- Expanded and more responsive research capabilities.

EXAMPLE III: Healthcare Innovations – Managing the Panel

- In the early 2000's, the primary care physicians at KP, like elsewhere, were caught in the daily grind of providing reactive care to increasingly sick patients. While HealthConnect allowed them to focus more completely on each individual patient, very few had the time or energy to think about the health care needs of the population of patients that they cared for their patient panel. Many of their patients never came to their clinic, making them effectively invisible.
- Two primary care physicians at the Hawaii Permanente Medical Group felt there had to be a better way what they called Total Panel Ownership (TPO). TPO focused on the primary care team's (e.g. physicians, nurses, medical assistants) relationship with the entire patient population. The team needs to "own and manage the panel", rather than the appointment schedule. This change in focus required a redesign of primary care processes.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE III: Healthcare Innovations – Managing the Panel con't.

- To roll-out the TPO approach KP deployed innovation teams and a change package (e.g. data driven workflows, relationship-based care so the team "knows" the patient, more convenient ways to interact with patients including less face-to-face visits and more telephone visits, and collaborative care planning and decision making with the patient).
- KP HealthConnect functionality supported the new TPO workflows. For example: the generation of health maintenance alerts (e.g. vaccinations, disease screening) and appointments scheduled; unlike pre-EHR telephone visits, all relevant patient information is available to the clinician; real time processing of lab and medication orders; completion of clinical notes is completed during the call; and an immediate "After Visit Summary" immediately sent to the patient.
- The net result of TPO was a decrease in office visits a 9% reduction per 1,000 members. Correspondingly there was an increase in telephone visits (e.g. in 2010 in Hawaii 30% of same day primary care visits were provided by telephone), as well as secure messaging communications and the patient portal interactions. Over a 3-year period physicians saw on average 6% more of their panel of patients, thereby increasing capacity or throughput.
- Almost all primary care innovation teams improved their quality performance, with 50% out-performing their regions. Quality measures also improved for the innovation teams faster than their regional counterparts.
- Finally, physician work satisfaction increased significantly, and the patient-physician "relationship" measure improved by up to 64%.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE IV: Collaboration and Cultural Transformation – The My Health Manager Patient Portal

- Kaiser Permanente started interacting with patients online (e.g. health advice, discussion groups) in the mid-1990's in its Northern California region. These innovations were expanded and by 1999 KP Online had 117,000 users. In 2003 with the adoption of HealthConnect new opportunities arose with the Epic MyChart module to provide KP members with secure access to their medical records. KP branded it My Health Manager and made it available to all 8.6 million members.
- My Health Manager features included provision of test results, allergies, diagnoses, immunizations, prescriptions, summaries of past office visits, with the medical data sourced from KP HealthConnect. In addition, appointment booking, health assessment tools and encyclopedias, plus secure messaging services were provided to patients. To assist KP put in place a patient advisory group that by 2010 had expanded to a 30,000 person virtual advisory group.
- As was expected, many clinicians initially felt that patients were not ready to see their health data without the physician acting as an interpreter. Having patients access their records at the click of a mouse was unsettling to many clinicians. A cultural change was needed. This was achieved through required clinician leadership, communication and collaboration.
- By 2010, My Health Manager had 3.3 million users or 63% of KP membership over 13 years of age, with around 80,000 new registrations per month. The most visited features were test results, "email your doctor" and online medication refills with around 72,000 patient visits per day to the portal in 2010.
- In 2020, My Health Manager and the underlying product Epic MyChart remain leaders in the patient portal space, globally.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE V: Population Health – Coronary Artery Disease

- Coronary Artery Disease (CAD) is one of the top five chronic conditions that account for the majority of health care costs. In 2010 it was the leading cause of mortality in the U.S. contributing to 40% of all deaths. Kaiser Permanente of Colorado developed the Collaborative Cardiac Care Service (CCCS) to improve the health of patients with CAD⁷.
- Within 24 hours of hospital discharge all patients hospitalized with a cardiac event are enrolled in a 3-6 month educational and case
 management program with a nursing team and a pharmacy team. CCCS works collaboratively with patients, primary care physicians,
 cardiologists, and other health care professionals to coordinate proven cardiac risk reduction strategies for CAD patients. Activities
 include lifestyle modification, medication management, patient education, laboratory monitoring, and management of adverse events,
 The CCCS team uses HealthConnect and HealthTrac to document all interactions with patients, track patient appointments, and collect
 data for evaluation of both short and long-term patient outcomes.
- By 2010 CCCS was following over 12,000 patients with CAD. CCCS demonstrated improvements in cholesterol screening (55% to 96.3%) and reduction in low-density lipoprotein cholesterol (LDL-c) <100 mg/dL (22% to 76.9%). Approximately 85% of these patients were receiving statin monotherapy The CCCS has shown a 76% reduction in all-cause mortality associated with CAD in the patients followed by the service. Patient and physician satisfaction has been high with CCCS.
- The program received the Care Continuum Alliance's Leadership Award in 2009 for the best use of technology to improve patient health outcomes.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE VI: Population Health – Mammography Screening

- In the early 2000's studies showed that early mammography screening, detection, diagnosis and treatment can reduce the breast cancer death rate by 20 to 50 percent, since 96% of all early stage, localized breast cancers are curable.
- IN 2003 KP set up "Operation Innovation" to identify and contact all women who met the age recommendations for mammograms, but had not been screened in the last 18 months.
- The program included use of the KP HealthConnect clinical information system to create the population cohort, track the mammography screening status of each target member, and record the results and procedures of each women.
- In addition, a wide range of methods were used to contact members, as well as conveniently and rapidly provide their mammograms (e.g. mobile mammography units) and results (e.g. a specialized team of clinicians was used to reduce the time for mammogram result-to-biopsy-to-diagnosis-to-surgical consultation).
- The program achieved a dramatic increase from 79.5% to 92% of eligible women receiving regular mammograms between 2004-2007. In addition there was a reduction in the time from the initial suspicion to the diagnosis of breast cancer from a median of 19 days to 9 days, with 79% of patients diagnosed within the target of 14 days.
- By 2008, Kaiser Permanente achieved the best breast cancer screening rates in the United States⁸.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE VII: Best Practices and Clinical Guidelines – Patient Safety

- The Institute of Medicine's seminal report "To Err Is Human" published in 2000 was a wake-up call to the health care industry, and a call-to-action for Kaiser Permanente. CEO George Halvorson recognized the opportunity to use KP HealthConnect to reduce preventable harm/injury to patients, improve the delivery of evidence-based care, and assist clinicians through the timely provision of information and decision support.
- With the focus on patient safety KP HealthConnect provided immediate benefits: legible, detailed longitudinal patient data, including the problem list, available 24/7; alerts (e.g. drug-drug interactions) and dose restrictions; and evidence-based order sets. KP then accelerated patient safety performance by: closing the loop of diagnostic test results; enhancing CPOE and decision support; creating drug surveillance features, as well as new ways to detect harm.
- Reducing Ventilator-Associated Pneumonia (VAP) VAP is the 2nd most common hospital-associated infection, and is preventable. In 2006, the Institute for Health Improvement's (IHI) ventilator bundle of five best practices were embedded into the KP HealthConnect ICU order sets. As a result the average VAP incidence rate reduced 60% in the first year and has a sustained reduction of 36% below the pre-intervention rate.
- Automated Harm Detection KP deployed the IHI Global Trigger Tool directly into HealthConnect as a way to identify adverse events, quantify the risk, degree and severity of harm. This adverse event surveillance capability allows KP to search all hospital inpatient records in real time and quickly identify and alert any quality/safety issues, as well as improve patient safety across the entire organization.

HealthConnect: Enabling the Transformation of Care Delivery

United States - Kaiser Permanente, Oakland, California

EXAMPLE VIII: Research

- KP has been conducting health care research since 1943. By 2010 it had eight research centres across the U.S. conducting epidemiological and health service research, making it one of the largest research programs in the country. Most of the research is published in the peer-reviewed "Permanente Journal" or other leading health care publications.
- With HealthConnect KP is able to easily access longitudinal, standardized clinical data on all its members. This "super-charged" KP's research efforts. By way of example, a few early EHR-enabled research papers are highlighted below.
 - **Population Research** A landmark study on gestational diabetes mellitus (Hillier)¹⁰.
 - Patient Safety Utility of alerts in laboratory and prescription ordering (Raebel)¹¹, and effects of EHR alerts for contraindicated prescriptions among elderly patients (Smith)¹².
 - Care Quality the effectiveness of diabetes management (Schmittdiel)¹³.
 - Effectiveness comparing outcomes for 40,000 patients taking Celebrex versus Vioxx (Graham)¹⁴.
- 9. See http://www.thepermanentejournal.org/
- 10. Hillier et al., "Childhood Obesity and Metabolic Imprinting: the Ongoing Effects of Maternal Hyperglycemia". Diabetes Care, September 2007. See https://care.diabetesjournals.org/content/diacare/30/9/2287.full.pdf
- 11. Raebel et al., "Randomized Trial to Improve Laboratory Safety Monitoring of Ongoing Drug Therapy in Ambulatory Patients". Pharmacotherapy, May 2006. See https://accpjournals.onlinelibrary.wiley.com/doi/abs/10.1592/phco.26.5.619
- 12. Smith et al., "The Impact of Prescribing Safety Alerts for Elderly Persons in an EMR". Archives of Internal Medicine, May 2006. See https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/410337
- 13. Schmittdiel et al., "The Effectiveness of Diabetes Care Management in Managed Care". American Journal of Managed Care, May 2009. See https://europepmc.org/article/med/19435397
- 14. Graham et al,. "Risk of Acute Myocardial Infarction and Sudden Cardiac Death in Patients Treated with Cyclo-oxygenase 2 Selective and Non-selective Non-Steroidal Anti-Inflammatory Drugs". Lancet. Feb 2005. See https://www.sciencedirect.com/science/article/abs/pii/S0140673605178647

Case for Investment

SNOMED CT Order
Sets

North York General Hospital (NYGH) is a community academic hospital affiliated with the University of Toronto in Canada. NYGH deployed their *eCare* project in 2007, using the SNOMED CT-embedded Cerner clinical information system, and in 2010 deployed CPOE, clinical decision support, and electronic medication management. The introduction of CPOE and over 850 SNOMED CT evidence-based order sets at NYGH shifted the organization to evidence-based practice.

Clinical Benefits

Using SNOMED CT evidence-based order sets NYGH achieved the following clinical benefits.

- 100% user adoption of the CPOE system; 92% of physician orders and 86% of medication orders entered by MDs.
- Approximately 50% of physician order volume was generated from evidence-based order sets.
- Increased use of evidence-based admission order sets from 36.5% pre-CPOE to 97.4% post-CPOE.
- Medication turnaround time for STAT antibiotics improved by 83% which leads to improved patient health outcomes.
- Inpatient preventable mortality from pneumonia and COPD exacerbation was reduced by 56% using CPOE with a correctly matched evidence based order set. Over 5 years this amounted to over 120 lives saved, a positive patient health outcome.
- Appropriate prophylaxis against venous thromboembolism (VTE) a blood clot in a deep vein increased from 50% of inpatients to >97% of inpatients, with a corresponding 39% reduction in VTE, a positive patient health outcome.

Economic Benefits

The total cost avoidance from improvements in the occurrence of four adverse events was determined to be CAD\$38.1M over 5 years, or CAD\$7.6M per year. When the total cost of acquiring and implementing the SNOMED CT-embedded *eCare* clinical information system was taken into account a net savings over the 5-year period of CAD\$1.2 million was achieved.

For the detailed NYGH Case Study see Appendix 5 here.

North York General Hospital

eCare: A Clinical Decision Support System

eCare: A Clinical Decision Support System

Canada – North York General Hospital Clinical Decision Support System, Toronto, Ontario

- North York General Hospital (NYGH) is a community academic hospital affiliated with the University of Toronto providing inpatient, ambulatory and long term care services. It was a HIMSS Davies Award of Excellence winner in 2016.
- NYGH commenced the deployment of their *eCare* project in 2007, using the Cerner clinical information system^{1,2}. In 2010 Phase II of the project was initiated for Computerized Provider Order Entry (CPOE), clinical decision support, and electronic medication management (i.e. eMAR, bar coding, medication reconciliation and eRx on discharge).
- The introduction of CPOE and **SNOMED CT** enabled evidence-based order sets at NYGH was an opportunity to shift the organization to evidence-based practice. However, similar to other CPOE and evidence-based order set implementations the *eCare* project met with significant resistance, particularly from physicians.
- NYGH initially tried to introduce **SNOMED CT** encoded problem lists through drop-down lists, but achieved less than 1% physician adoption because there were too many terms and it took too long (i.e. ~12 seconds) per diagnosis to complete.
- NYGH then changed tack and introduced **SNOMED CT** using a "stealth approach" by building diagnoses and comorbidities into ordering workflow (increased to 15% adoption), adding diagnoses into documentation workflow for endoscopy, diabetes care, and urology (increased to 30% adoption), and finally into physician in-patient documentation when the vendor upgraded this functionality (100% adoption in the pilot group) which has been rolled out specialty-by-specialty.

^{1.} Theal et al., "CPOE with Evidence-Based Clinical Decision Support Improves Patient Outcomes", Healthcare Quarterly Vol 17 No 1, Longwoods, 2014

^{2.} Theal et al., "CPOE with Evidence-Based Clinical Decision Support Improves Patient Outcomes – Part 2", Healthcare Quarterly Vol 17 No 4, Longwoods, 2014

eCare: A Clinical Decision Support System

Canada – North York General Hospital Clinical Decision Support System, Toronto, Ontario (continued)

• During this process the NYGH clinicians were invited to develop their own library of evidence-based order sets as a way to both standardize (i.e. use of evidence) and personalize (i.e. patient care plan) care. Once created, the 850 plus NYGH order sets were then made available to other health organizations across Canada.

Significant Patient Outcome Benefits Achieved³

- Achieved 100% user adoption of the CPOE system; 92% of physician orders and 86% of medication orders entered by MDs.
- Approximately 50% of physician order volume was generated from evidence-based order sets.
- Increased use of evidence-based admission order sets from 36.5% pre-CPOE to 97.4% post-CPOE.
- Medication turnaround time for STAT antibiotics improved by 83% (291 to 50 mins) which is important for diagnoses like pneumonia, where getting the antibiotic faster vastly improves patient health outcomes.
- In a review of CPOE and evidence-based order sets North York researchers found that inpatient preventable mortality from pneumonia and COPD exacerbation was reduced by 45% using CPOE vs paper orders, and by 56% using CPOE with a correctly matched evidence based order set (even after adjustment for comorbidities, age, sex, diagnosis, length of stay and critical care unit admission). Over 5 years this amounted to over 120 lives saved, a positive patient health outcome.

^{3.} Theal J., "SNOMED CT – A Canadian Clinical Perspective", James Read Memorial Lecture, SNOMED International EXPO, Bratislava, 2017. See https://confluence.ihtsdotools.org/display/FT/SNOMED+CT+Expo+2017#:~:text=Thursday%2C%2019th%20October%202017%20%20%20,Expo%202017%20Drinks%20Reception%20-%200%20...%20

eCare: A Clinical Decision Support System

Canada – North York General Hospital Clinical Decision Support System, Toronto, Ontario (continued)

Significant Patient Outcome Benefits Achieved con't

• Appropriate prophylaxis against venous thromboembolism (VTE) – a blood clot in a deep vein - increased from 50% of inpatients to >97% of inpatients, with a corresponding 39% reduction in VTE, a positive patient health outcome.

Economic Benefits Achieved

- The eCare ROI was determined by applying the Economics of Patient Safety⁴ findings for 4 adverse events to the NYGH experience. The four adverse events included: reduction in medication errors, reduction in nosocomial adverse drug events, VTE prevention and prevented recurrences of *C. difficile*.
- The total cost avoidance from improvements in the occurrence of the four adverse events was determined to be CAD\$38.1M over 5 years, or CAD\$7.6M per year.
- When the total cost of acquiring and implementing the *eCare* clinical information system was also taken into account a net savings over the 5-year period of CAD\$1.2 million was achieved.

^{4.} Etchells, Mittmann et al., "The Economics of Patient Safety in Acute Care – A Technical Report", Canadian Patient Safety Institute, 2012. See
https://www.patientsafetyinstitute.ca/en/toolsResources/Research/commissionedResearch/EconomicsofPatientSafety/Documents/Economics%20of%20Patient%20Safety%20-%20Acute%20Care%20-%20Final%20Report.pdf

Case for Investment

Case Studies

BARTS

Established in 2012, BARTS NHS Trust (BARTS) operates five hospitals throughout the City of London and East London for over 2.6 million people, in an area characterized by significant diversity and health inequalities. It is one of largest NHS Trusts.

Cerner

The BARTS SNOMED CT-embedded Cerner Millennium clinical information system was introduced in 2008, and subsequently expanded and enhanced, with a focus on a providing a single system, connectedness, and big data.

Economic Benefits

A Benefits Deep Dive of the CRS implementation was conducted in 2013. It identified many of the same benefits that we have seen in the other clinical information system implementation case studies such as:

- Emergency Department: More effective record storage and retrieval; less duplicate data entry; reduction in 4-hour breaches; improvements in ED efficiency and workflow from using an electronic whiteboard.
- Outpatient Clinics: More effective record storage and retrieval; reduction in paper referrals due to a centralized e-referral service; improved appointment booking; more effective patient communications by providing letters at the end of the consultation; and an increase in revenues due to improved coding the finished consultant episodes (FCE).

Infection Control Benefits In 2016 BARTS did not meet national legislative requirement to isolate infectious patients appropriately. BARTS deployed a SNOMED CTembedded system of infection control reporting using patient laboratory results data. Patient Safety Benefits achieved – A 30% reduction in the number of patients inappropriately located in open bays; reduced risk of exposure to infections and infection transmission; and reduction in time spent to locate and isolate infectious patients.

Smoking Cessation

Compared to national benchmarks, there are higher numbers of smokers in east London, especially among the South Asian community. This in turn, results in higher rates for smoking-related disease admissions to hospital and higher mortality rates for cancer and respiratory disease. BARTS uses SNOMED CT to record in the Cerner problem list those patients who smoke and/or chew tobacco. They are immediately referred to a smoking cessation program, which is a requirement for payment under NHS commissioning arrangements.

BARTS NHS Trust and the ELHCP

Case for Investment

ELHCP

BARTS is also part of the East London Health and Care Partnership (ELHCP), a region with the highest population growth in London. The population is diverse, with a high percentage of the population relying on benefits, experiencing unemployment, plus living in poor housing and environment. Poor health outcomes for its population including obesity, cancer, mental health, and dementia, with a high reliance on emergency services, access to services issues, particularly in primary care.

East London Patient Record

The ELHCP East London Patient Record (eLPR) is a consolidated, read only view of a patients' health record, covering a population of about 1.5 million. The eLPR is created and shared among clinicians via two independent Cerner health information exchanges (HIEs), with over 150,000 eLPR views occurring per month in late 2020. Interoperability is achieved within East London by standardizing data entry and coding care using SNOMED CT standards.

Benefits

A 2017 an eLPR Benefits Study Evaluation of clinician users found improvements in:

- 1. Efficiency 48% of clinicians felt the amount of paperwork had been reduced, 63% felt there had been a reduction in records notes going missing and 42% recorded a reduction in the number of orders. About 80% of the clinicians stated that the number of phone calls answered or made were reduced.
- 2. Referrals Based on the responses to the survey it was concluded that 1,233 referrals are avoided across Waltham Forest, East London and City (WELC) each year. This equates to an annual saving of £133k.
- 3. Patient Engagement 62% of clinicians felt that the patient engagement and relationship was improved with eLPR.
- 4. Clinician Satisfaction Overall, 81% of clinicians felt eLPR had a positive effect on their working day.

4

BARTS NHS Trust and the ELHCP

Case for Investment

Discovery East London Discovery East London was first established in 2016 to create a linked dataset of real-time clinical data from a myriad of care settings, including BARTS, that has now been scaled across all of London. The ELHCP Discovery program publishes primary care, secondary care (e.g. BARTS), mental health and other care data in a common health data platform so that it can be used for clinical analytics, population analytics, management analytics and research purposes. The data in the Discovery data platform is all encoded in SNOMED CT. At this time there are over 25 projects that are either live or in progress. By way of example eight of these twenty-five projects are sourced from the BARTS NHS Trust and includes: Serious Mental Illness; BARTS Pancreas Tissue Bank; NHS 111 Discovery Frailty Flagging; Childhood Immunizations and 6-Week Check; and East London Genes and Health.

OneLondon

OneLondon is a partnership of NHS organizations and local government across all of London, working together with citizens to transform London's health and care services by integrating information to support patient care. Both BARTS and the East London Health and Care Partnership are part of the OneLondon program. In short, the OneLondon program will take the digital health successes from the likes of BARTS and the East London Health and Care Partnership and extend that across the entire the City of London and the 32 boroughs with its combined population of over 9 million people.

For example, the OneLondon Patient Record (as per the eLPR), as well as a OneLondon data platform (as per the ELHCP Discovery platform) is being deployed. Currently, the OneLondon Patient Record provides clinician access to the health records of 6 million patients in 3 of the 5 zones within London.


For the detailed BARTS and ELHCP Case Study see Appendix 5 here.

4

BARTS NHS Trust
and the ELHCP

A Regional Digital Health Initiative

> Table of Contents

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

BARTS NHS TRUST

- Established in 2012, BARTS NHS Trust (BARTS) runs five hospitals throughout the City of London and East London. The trust provides community, acute care and specialist services to a population of over 2.6 million people, in an area characterized by significant diversity and health inequalities. The health profile and health needs vary significantly between, and within, individual boroughs, with a distinct difference between the Inner and Outer London boroughs. It is one of the largest NHS trusts in England, and accounts for 1.5% of all hospital activity in the country. It runs the largest cardiovascular centre in the United Kingdom, the second largest cancer centre in London, as well as the leading stroke and renal units.
- While BARTS uses a single instance of its **SNOMED CT**-embedded Cerner Millennium clinical information system across its five hospitals it is also a key player in the broader East London and London digital health initiatives. This case study will highlight the use of **SNOMED CT** across the six use domains for:
 - The BARTS clinical information system implementation,
 - The East London Patient Record (EHR) implementation,
 - The East London Discovery program, and
 - The OneLondon program.

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

BARTS CLINICAL INFORMATION SYSTEM IMPLEMENTATION AND USE

- The BARTS **SNOMED CT**-embedded Cerner Millennium clinical information system (locally known as the Care Record System or CRS) was introduced in 2008, and subsequently expanded and enhanced, with a focus on
 - 1. **Single System** where all BARTS patient data is recorded in a consistent and coherent format, that is easily shareable among clinicians and is open to analysis,
 - 2. Connectedness where the Trust's Electronic Health Record (EHR) data is available in real-time to primary care, community care and mental health clinical professionals thereby enabling coordinated health care, and
 - **3. Big Data**, the sharing of data enables the creation of central data repositories from which structured analysis is possible across a wide spectrum of circumstances, e.g. patient outcomes, satisfaction, performance monitoring, genomics and research.
- A "Benefits Deep Dive" of the CRS implementation was conducted in 2013. It identified many of the same benefits that we have seen in the other clinical information system implementation case studies such as:
 - <u>Emergency Department:</u> More effective record storage and retrieval; less duplicate data entry; reduction in 4-hour breaches; improvements in ED efficiency and workflow from using an electronic whiteboard.
 - <u>Outpatient Clinics</u>: More effective record storage and retrieval; reduction in paper referrals due to a centralized e-referral service; improved appointment booking; more effective patient communications by providing letters at the end of the consultation; and an increase in revenues due to improved coding the finished consultant episodes (FCE).
- 1. Overton et al., "Benefits Deep Dive into Cerner Millennium Implementation July 2013 to January 2014", Health and Social Care Information Centre (now NHS Digital), 2014 https://confluence.ihtsdotools.org/display/CP/Clinical+Use+Cases?preview=%2F57808738%2F96810424%2FBarts Health Case Study.pdf

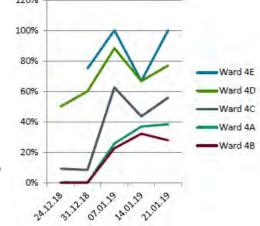
A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

BARTS CLINICAL INFORMATION SYSTEM IMPLEMENTATION AND USE

Infection Control Problem^{2,3}

- in 2016 BARTS was not compliant with national legislative requirement to isolate infectious patients appropriately. Clinicians were unable to obtain daily aggregate data for current inpatients showing: infections, infection status (active vs. inactive), and location (open bay vs. side room).
- A manual data collection process meant scrolling through bed boards and individual patient records. For a trust with 2,100 beds across 110 wards at five different sites, this process was both time-consuming and prone to human error.
- BARTS now has an automated system of infection control reporting using **SNOMED CT** terms, which pulls in data directly from every patient's laboratory results. As a result, clinical decisions are now better guided and supported by reliable, up-to-date information. It also allows nurses on the ward and the infection control team to instantly spot patients who should be moved to isolation, and it assists with contact tracing when needed.
- <u>Patient Safety Benefits Achieved</u> A 30% reduction in number of patients inappropriately located in open bays; <u>reduced risk of exposure to infections</u>; <u>reduced risk of infection transmission</u>; and reduction in time spent by the Infection Control team to locate and isolate infectious patients.
- 2. Gutteridge C., "Speaking a common language: driving interoperability using SNOMED CT", September 2019. See https://www.cerner.com/gb/en/blog/speaking-a-common-language-driving-interoperability-using-snomed-ct
- 3. Gutteridge C.,"Practical use of SNOMED CT- Real World Examples from BARTS Health" Presentation at SNOMED International Conference. Helsinki March 28th 2019


A Regional Digital Health Initiative

United Kingdom - BARTS NHS Trust and the East London Health and Care Partnership, London, England

BARTS CLINICAL INFORMATION SYSTEM IMPLEMENTATION AND USE

Smoking Cessation⁴

- Compared to national benchmarks, there are higher numbers of smokers in east London this in turn, results in higher rates for smoking-related disease admissions to hospital and higher mortality rates for cancer and respiratory disease.
- East London, also has a large South Asian Community. Tobacco chewing is common because tobacco is often added to paan (betel nut, herbs & spices wrapped in betel leaf and chewed). In the local Bangladeshi community, 60% of men and 50% of women use chewing tobacco. Tobacco +/- paan is a public health issue because it increases the risk of oral cancer, cardiovascular disease and adverse pregnancy outcomes.
- BARTS uses **SNOMED CT** to record patients who smoke and/or chew tobacco on their problem list. They are immediately referred to a smoking cessation program, which is a requirement for payment under NHS commissioning arrangements.
- BARTS also does data extraction from the Cerner clinical information system using SNOMED CT to
 determine the number of inpatients on each ward who smoke and/or chew tobacco and have cancer
 (i.e. 30% to 100%). In the first 8 months the recording of smoking status by clinicians increased from 5%
 to 50% of patients.

A Regional Digital Health Initiative

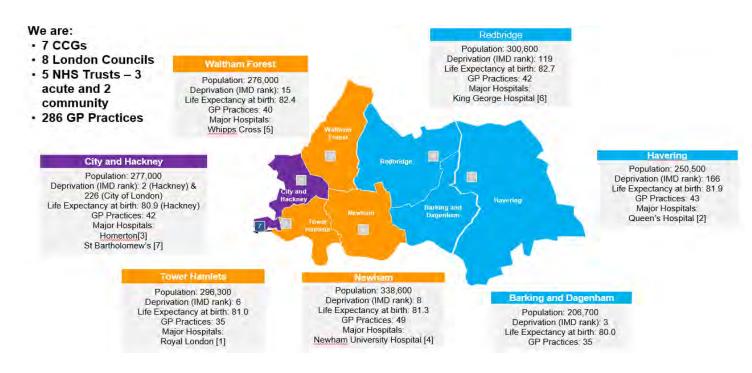
United Kingdom - BARTS NHS Trust and the East London Health and Care Partnership, London, England

BARTS CLINICAL INFORMATION SYSTEM IMPLEMENTATION AND USE

Chronic Obstructive Pulmonary Disease (COPD) Clinical Audit⁵

- An estimated 3 million people in the UK have COPD, and it is the second most common cause of emergency hospital admission. Further, about a third of those admitted to hospital as a result of their COPD are readmitted within a month of discharge. The total annual cost of COPD to the NHS is over £800 million.
- BARTS is required to collect clinical audit data on COPD patients. It had an opportunity to gain £1.8 million and improve its reputation with funders by bringing COPD emergency spending in line with the best 5 hospitals in its NHS peer group.
- BART's respiratory clinicians and the ICT team moved from a paper-based system, to continuous data collection using a hybrid of paper-based and **SNOMED CT** encoded electronic methods, including clinical documentation.
- The next stage is a move to a fully integrated system that will pull data from respiratory teams in all of the Trust's hospital and community sites, based on **SNOMED CT** terminology agreed with clinicians. Collaboration with other departments, including acute medicine and mental health, is also vital.

A Regional Digital Health Initiative


United Kingdom - BARTS NHS Trust and the East London Health and Care Partnership, London, England

EAST LONDON HEALTH AND CARE PARTNERSHIP

 BARTS (see the purple and orange boroughs) is also part of the East London Health and Care Partnership (ELHCP).

The ELHCP region has:

- The highest population growth in London.
- A changing population with increasing diversity.
- A high percentage of the population relying on benefits, experiencing unemployment, plus living in poor housing and environment.
- Poor health outcomes for its population including obesity, cancer, mental health, and dementia.
- Service quality issues including a high reliance on emergency services, late diagnoses and treatment and access to services issues, particularly primary care.
- Further, there is significant variation between each borough/place in health and care outcomes, available services, and resources.

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

ELHCP EAST LONDON PATIENT RECORD⁶

- The ELHCP East London Patient Record (eLPR) has been in place since 2014. It is a consolidated, read only view of a patients' health record, and has more detailed clinical data than the national Summary Care Record. The record is sourced from 4 Clinical Commissioning Groups (CCGs), 5 BARTS acute hospital sites, 2 mental health trusts, three sets of community services and almost 200 GP practices, covering a population of about 1.5 million.
- The eLPR is created and shared among clinicians via two independent Cerner health information exchanges (HIEs), with over 150,000 eLPR views occurring per month in late 2020. Interoperability is achieved within East London by standardizing data entry and coding care, pathway by care pathway, using **SNOMED CT** standards.
- In 2017 an eLPR Benefits Study Evaluation⁷ was conducted, where clinician users of the eLPR in both primary and secondary care settings were surveyed and interviewed.

Key Benefits Identified

- <u>Efficiency</u> 48% of clinicians felt the amount of paperwork had been reduced, 63% felt there had been a reduction in records notes going missing and 42% recorded a reduction in the number of investigations ordered. Similarly, 78% of hospital clinicians state that they could better handle the speed and quality of treatment in their department. About 80% of the clinicians stated that the number of phone calls answered or made were reduced because the information is available in eLPR thereby reducing the need to call a colleague for further information.
- 6. See http://www.cityandhackneyccg.nhs.uk/about-us/elpr.htm
- 7. Readman et al, "East London Patient Record Benefits Study Evaluation", 2018. See https://www.eastlondonhcp.nhs.uk/downloads/ourplans/digital/East%20London%20Patient%20Record%20Benefits%20Report%20DIGITAL%20FINAL.pdf

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

EAST LONDON PATIENT RECORD con't

Key Benefits Identified con't

- <u>Referrals</u> Based on the responses to the survey it was concluded that 1,233 referrals are avoided across Waltham Forest, East London and City (WELC) each year. Taking the cost of first referral, single professional for the lowest cost treatment function (Anesthetics) and a market forces factor of 1.2 (just under both Homerton and Barts Health's figure), i.e. £111, this equates to an annual saving of £133k.
- <u>System Consolidation</u> In 2017 the Newham Hospital Urgent Care Centre was able to consolidate its use of systems through the eLPR. This brought a number of notable benefits including: elimination of dual-entry and associated training costs and time wasted entering data into multiple systems leading to savings in licensing and support costs. This will save Newham CCG approximately £500k per year.
- Patient Engagement 62% of clinicians felt that the patient engagement and relationship was improved with eLPR.
- Clinician Satisfaction Overall, 81% of clinicians felt eLPR had a positive effect on their working day.

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

THE ELHCP DISCOVERY PROGRAM8

- Discovery East London was first established in 2016 to create a linked dataset of real-time clinical data from a myriad of care settings, including BARTS, across five boroughs: City of London, Hackney, Newham, Tower Hamlets and Waltham Forest. The service has now been scaled across London, with a potential opportunity to scale it nationally, as part of the NHS Data Discovery Service⁹.
- The ELHCP Discovery program objective has been to publish primary care, secondary care (e.g. BARTS), mental health and other care data in a common health data platform so that it can be used for clinical analytics, population analytics, management analytics and research purposes. By implementing strict data governance and controlled technical access approved users of the data can subscribe to the service and use it for their approved purpose (e.g. research).
- The data in the Discovery data platform is all encoded in **SNOMED CT**. The data from the source systems either comes as **SNOMED CT** encoded (e.g. data from GP systems and the BARTS secondary care system) or is transformed to **SNOMED CT** as part of the ETL process, if the source system does not use **SNOMED CT**.
- At this time there are over 25 projects that are either live or in progress. By way of example eight of these twenty-five projects are sourced from the BARTS NHS Trust. Examples of live projects are shown overleaf.

^{8.} See https://www.eastlondonhcp.nhs.uk/downloads/ourplans/digital/Discovery_Programme-Annual_Report_Jan_2019.pdf

^{9.} See https://www.discoverydataservice.org/Content/Overview.htm

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

THE ELHCP DISCOVERY PROGRAM

Examples of Live Projects

- 1. <u>Serious Mental Illness (SMI)</u>, East London Foundation Trust (ELFT): The SMI query reconciles ELFT secondary care mental health data with primary care serious mental health datasets.
- 2. <u>BARTS Pancreas Tissue Bank</u>, BARTS: The Barts Pancreas Tissue Bank (BPTB) is a unique and vital resource for researchers to provide a multitude of specimen types from pancreas disease and cancer patients as well as healthy controls. The samples are mainly collected from the Royal London Hospital and curated at Barts Cancer Institute.
- 3. NHS 111 Discovery Frailty Flagging, Multiple Boroughs: The Discovery Data Service helps to identify potentially frail patients using a frailty algorithm and the results are provided to the NHS 111 London Ambulance Service clinician upon request.
- 4. <u>Childhood Immunizations and 6-Week Check</u>, NE London Child Health Immunization Service: The daily extract provides an **update on changes in all immunizations over the past 24 hours,** so the data platform and GP systems are in sync.
- 5. <u>East London Genes and Health</u>, Multiple Boroughs: The East London Genes and Health (ELG&H) study aims to <u>improve the health of people of Pakistani and Bangladeshi heritage</u> by <u>analyzing the genes and health of 100,000 local people</u>. A more detailed description of this project is outlined starting on the next page.

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

ELHCP DISCOVERY: POPULATION HEALTH ANALYTICS and RESEARCH – East London Genes and Health Study¹⁰

- Recent genomic advances offer the potential to better understand the genetic causation of disease, and to direct pharmacotherapy to rare loss-of-function gene variants.
- East London Genes & Health (ELGH) is a community based, long-term study of health and disease in British-Bangladeshi and British-Pakistani people in east London. ELGH has a population-based design incorporating cutting-edge genomics with **SNOMED CT**-embedded electronic health record (EHR) data linkage and targeted recall-by-genotype (RbG) studies. ELGH has >34,000 volunteers with funding to expand to 100,000 volunteers by 2023.
- Almost a quarter of the world's population, and 5% of the UK population, are of South Asian origin. The risk of coronary heart disease is 3-4 times higher, and type 2 diabetes (T2D) 2-4 times higher in UK South Asians compared with Europeans. East London incorporates one of the UK's largest South Asian communities (29% of 1.95 million people), of which 70% are British-Bangladeshi and British-Pakistani, and its population live in high levels of deprivation (Tower Hamlets, Hackney, Barking and Dagenham are the 9th, 10th and 11th most deprived local authorities in England).
- Compared to White Europeans, South Asians living in east London have a two-fold greater risk of developing T2D, nearly double the risk of non-alcoholic liver disease, and over double the risk of multimorbidity, with the onset of cardiovascular disease occurring 8 years earlier in men. Determinants of poor cardiometabolic health start early in the life course, with higher rates of overweight and obese children in east London compared to the UK average.

^{10.} Finer et al., "East London Genes & Health (ELGH), a community based population genomics and health study of British-Bangladeshi and British-Pakistani people.", bioRxiv preprint, February 2019. See https://www.biorxiv.org/content/10.1101/426163v2.full.pdf

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

ELHCP DISCOVERY: POPULATION HEALTH ANALYTICS and RESEARCH - East London Genes and Health Study con't

- ELGH¹¹ combines health data science using linked NHS **SNOMED CT**-embedded EHR data, BARTS **SNOMED CT**-embedded EHR data as well as local GP systems data (now with **SNOMED CT**-embedded data) with exome sequencing and SNP array genotyping to elucidate the genetic influence on health and disease, including the contribution from high rates of parental relatedness on rare genetic variation and homozygosity (autozygosity), in the two understudied ethnic groups. Linkage to longitudinal health record data enables both retrospective and prospective analyses.
- <u>Stage 1</u> entailed the development of the study cohort. ELGH invited voluntary participation of all British-Bangladeshi and British-Pakistani individuals aged 16 and over, living in, working in, or within reach of, east London. Recruitment is largely undertaken by bilingual health researchers, and takes place in: (a) community settings, e.g. mosques, markets and libraries, supported by a third-sector partner organization (Social Action for Health), and (b) healthcare settings, e.g. GP surgeries, outpatient clinics. Stage 1 volunteers complete a brief questionnaire, give consent to lifelong EHR linkage, and donate a saliva sample for DNA extraction and genetic tests. Between April 2015 and January 2019, ELGH has recruited 34,482 volunteers to Stage 1 (currently ELGH has ~50,000 volunteer recruits).
- Through <u>Stage 2</u> studies, ELGH now offers researchers the opportunity to undertake recall-bygenotype and/or recall-by-phenotype studies on volunteers. Sub-cohort, trial-within-cohort, and other study designs are possible. ELGH is a fully collaborative, open access resource, open to academic and life sciences industry scientific research partners. Eight approved Stage 2 research studies using the ELGH Stage 1 cohort data have been published and sixteen are underway.

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

ELHCP DISCOVERY: POPULATION HEALTH ANALYTICS and RESEARCH - East London Genes and Health Study con't

By way of example, the ELGH Stage 2 Studies Published to Date¹² include:

- 1. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 2020 Sept 3. DOI https://doi.org/10.1016/j.cell.2020.06.045
- 2. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. New England Journal of Medicine 2020 Jun 17. DOI https://doi.org/10.1056/NEJMoa2020283
- 3. Evaluating potential drug targets through human loss-of-function genetic variation. Nature 2020 May;581(7809):459-464. DOI https://doi.org/10.1101/530881
- 4. Characterizing a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. eLife 2020;9:e54363. DOI https://doi.org/10.7554/eLife.54363
- 5. Effects of autozygosity on a broad range of human phenotypes. Nature Communications 2019 Oct 31;10(1):4957. DOI https://doi.org/10.1038/s41467-019-12283-6
- 6. Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nature Communications 2018 Feb 19;9(1):711. DOI https://doi.org/10.1038/s41467-018-03109-y
- 7. Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. Nature Communications 2017 Aug 21;8(1):303. DOI https://doi.org/10.1038/s41467-017-00323-y
- 8. Health and population effects of rare gene knockouts in adult humans with related parents. Science 2016 Apr 22;352(6284):474-7. DOI https://doi.org/10.1126/science.aac8624
- 12. See http://www.genesandhealth.org/about-study/scientific-publications

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

ELHCP DISCOVERY: POPULATION HEALTH ANALYTICS - COVID-19 in Ethnic Minority Populations¹³

- The first wave of the London COVID-19 epidemic peaked in April 2020. Attention initially focused on severe presentations, intensive care capacity, and the timely supply of equipment. While general practice saw a rapid uptake of technology to allow for virtual consultations, little was known about the pattern of suspected COVID-19 presentations in primary care.
- A cross-sectional study was undertaken using ELHCP Discovery. Utilizing anonymized data from the SNOMED CT-encoded primary care
 records of approximately 1.2 million adults registered with 157 practices in four adjacent east London clinical commissioning groups
 (note: all GP EMRs use SNOMED CT in the UK). The study population includes 55% of people from ethnic minorities and is in the top
 decile of social deprivation in England.
- General Practitioners recorded 8,985 suspected COVID-19 cases between 10 February and 30 April 2020. Univariate analysis showed a two-fold increase in the odds of suspected COVID-19 for South Asian and black adults compared with white adults.
- Using data from GP primary care records, black and South Asian ethnicity is a predictor of suspected COVID-19, with levels of risk similar to hospital admission reports.

^{13.} Hull et al., "Prevalence of Suspected COVID-19 Infection in Patients from Ethnic Minority Populations: a Cross-Sectional Study in Primary Care.", British Journal of General Practice, Online First 2020. See https://bjgp.org/content/early/2020/09/07/bjgp20X712601

A Regional Digital Health Initiative

United Kingdom – BARTS NHS Trust and the East London Health and Care Partnership, London, England

ONELONDON PROGRAM¹⁴

OneLondon is one of the country's first Local Health and Care Record Exemplars (LHCRE), designated by NHS
England. The OneLondon LHCRE is a partnership of NHS organizations and local government across all of
London, working together with citizens to transform London's health and care services by integrating
information to support patient care.

- Both BARTS and the East London Health and Care Partnership are part of the OneLondon program. In short, the OneLondon program will take the digital health successes from the likes of BARTS and the East London Health and Care Partnership and extend that across the entire the City of London and the 32 boroughs with its combined population of over 9 million people.
- For example the OneLondon Patient Record (similar to eLPR), as well as a OneLondon data platform similar to the East London Health and Care Partnership Discovery platform is being deployed. Currently, the OneLondon Patient Record provides clinician access to the health records of 6 million patients in 3 of the 5 zones in London.
- The first step in the OneLondon program has been citizen engagement which occurred over the 12 month period starting in June 2019. This process resulted in the recent publication of the "Public Deliberation in the Use of Health and Care Data" ¹⁵.

^{14.} See https://www.onelondon.online/

 $[\]textbf{15. See} \ \underline{\text{https://www.onelondon.online/wp-content/uploads/2020/07/Public-deliberation-in-the-use-of-health-and-care-data.pdf} \\$

Case for Investment

CUH

Cambridge University Hospitals (CUH) is one of the largest healthcare trusts in England, caring for patients through its two hospitals – Addenbrooke's and The Rosie. It is also a leading national centre for specialist treatment, a comprehensive biomedical research centre, one of only six academic health science centres in the UK, and a university teaching hospital with a worldwide reputation for clinical excellence.

eHospital System

CUH deployed its £200 million eHospital clinical information system from Epic, for both inpatient and outpatient services, in October 2014. In June 2017 CUH launched the MyChart patient portal. CUH uses SNOMED CT for coding diagnoses, symptoms and problems in their eHospital system, key data that is used for many inpatient and outpatient clinical processes. In addition, this data is used for advanced analytics and research.

Key Quantitative Benefits Key quantitative benefits achieved include:

- Chart Pulls £460,000 saved annually in staff time as paper patient record retrieval is no longer required.
- Nursing Productivity £1.1m saved annually in nursing time as observations and medication administration are recorded directly into patient records at the bedside, using handheld devices connected to our EHR.
- Adverse Drug Events 850 significant adverse reactions prevented each year with electronic allergy-related prescribing alerts in our EHR triggering a change in medication prescriptions saving 2,450 bed days a year, equivalent to £0.98 million/year.
- Medication Management 100% recording of the indication for antibiotic prescribing leading to more meaningful antibiotic stewardship antibiotics are only prescribed if they are truly needed.
- Patient Health Outcomes 42% reduction in sepsis mortality with electronic sepsis alerts built into the EHR by the eHospital team.

Case for Investment

Cambridge University Hospitals NHS Foundation Trust

Out-Patient Clinics

Using fully digital out-patient clinics has enabled CUH to improve patient care, safety and experience; and to make the running of the busy clinics much more effective and efficient.

- Elimination of Paper: 100% reduction in paper first referrals from GPs to the consultant-led clinics/services because the EHR is integrated with the NHS e-Referral service.
- Appointment Efficiency Gains: 4,500 orthopedic clinic appointment slots per year were freed up because clinicians were able to view clinical notes and x-rays virtually in the EHR to determine whether a patient needs an appointment, or not.
- Effective Patient Communications: 80% of clinic letters in pediatric gastroenterology are given to the parents at the end of clinic because data from the EHR is automatically combined into a structured letter.
- Improved Clinic Throughput: 20% more patients are being seen in the surgical pre-assessment clinic as patients are able to complete their own initial documentation on a digital tablet, and save it to the EHR.

Emergency

Addenbrooke's Hospital is one of the busiest emergency (A&E) departments in the UK and is a Major Trauma Centre for the region. Quick and easy access to information is essential for all staff working in Emergency due to the high volume of patients being treated, twenty-four hours a day, seven days a week.

- Elimination of Paper: the need to urgently source paper records for ED patients has been completely eliminated.
- Emergency Department Efficiency Gains: a digital emergency department allows all care providers to gain rapid access to the patients information in the EHR.
- Appointment Efficiency Gains: No waiting for paper notes from the ED before follow-up appointments can be booked.
- Improved Coordination of Care: Letters are automatically sent from the EHR to the patients' GP when the patient is admitted to an inpatient area from the emergency department. Discharge summary letters are sent electronically from the EHR to the patient's GP within 24 hours of discharge from the emergency department.

Case for Investment

Cambridge University Hospitals NHS Foundation Trust

Digital Theatres and Critical Care

In high dependency areas, like operating theatres and intensive care, all of the physiological monitors and ventilators, in all 40 theatres,148 high-dependency areas and critical care beds, are connected to the EHR.

- Staff Efficiency Gains: data generated from medical devices is being automatically and continuously recorded directly into the EHR removing the need for manual transcription a staff time saving equivalent to £2.6 million a year.
- Theatre Throughput: 18% increase in main theatre case volume through faster theatre turnaround/analytics in the EHR.
- Clinical Efficiency Gains: a 30 minute reduction in our Rapid Response Team getting to patients.
- Improved Patient Outcomes: 2-3 avoidable deaths prevented each year with electronic routine review of best practice for ventilator tidal volumes in the EHR.

Infection Control

Sepsis is a life-threatening condition that arises when the body responds to an infection by attacking its own tissues and organs. Every year in the UK approximately 250,000 people are affected by sepsis and it accounts for around 50,000 deaths. Research shows that for every hour delay in receiving antibiotics the risk of sepsis mortality increases by 8%.

- Improved Patient Care: 100% sepsis screening now occurs in the Emergency department.
- Improved Patient Care: 70% increase in patients receiving antibiotics for sepsis within 1 hour of arrival in Emergency with electronic sepsis alerts in our EHR.
- Improved Patient Care: 80% increase in patients receiving antibiotics for sepsis within 90 minutes of arrival in the ED.
- Improved Patient Care: a 50% increase in adult inpatients receiving antibiotics for sepsis within both 60 and 90 minutes of the sepsis alert being triggered in the EHR.
- Improved Patient Health Outcomes: 42% reduction in sepsis mortality across the Trust. At least 64 lives saved in 2018 with sepsis alerts created in the EHR.

Case for Investment

Interoperability

The eHospital system interoperates with the West Suffolk Hospital's Cerner Millennium EHR (they share 30% of patients). This digital link also connects Cambridge University Hospitals with all hospitals across the world that use an Epic EHR to advance the care of their internationally shared patients. Separately, CUH has been working with NHS Digital to develop and test a new FHIR medication specific message that will be used to share medication information between GPs and hospitals. Some elements of the message are human readable text, but there is also coded data using SNOMED CT and dm+d codes.

Patient Portal

At CUH, a patient's eHospital information is available to them electronically via Epic MyChart instead of being posted to them: appointment letters /past appointment details; current health problems/conditions; clinic letters/clinical correspondence; vital signs (weight, height, blood pressure, temperature, pulse, respiratory rate); test results; medications; known allergies.

- Access 24x7 Patients can access their information in MyChart anytime and anywhere.
- Effective Appointments CUH patients can also complete pre-appointment questionnaires electronically within MyChart, with the results then being discussed during their next clinic appointment. This makes appointments much more effective as our patients and clinicians spend more time discussing care and treatment plans together.
- Reduce Patient Visits Empowering CUH patients to contribute to their health record, MyChart encourages our patients to contribute to their health information without having to make unnecessary visits to CUH hospitals.
- As of December 2019 23,000+ patients were using CUH MyChart.

For the detailed Cambridge University Hospitals NHS Foundation Trust Case Study see Appendix 5 here.

eHospital: A Clinical Information System

Cambridge University Hospitals' current digital maturity is the highest of any of the trusts visited.

National Advisory Group report on Health Information Technology in England, chaired by Professor Robert Wachter (September 2016)

> Table of Contents

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

- Cambridge University Hospitals (CUH) is one of the largest healthcare trusts in England, caring for patients through its two hospitals –
 Addenbrooke's and The Rosie. Located on the 142 acre Cambridge Biomedical Campus, it is also a leading national centre for specialist
 treatment, a comprehensive biomedical research centre, one of only six academic health science centres in the UK, and a university teaching
 hospital with a worldwide reputation for clinical excellence.
- CUH deployed its £200 million *eHospital* clinical information system from Epic, for both inpatient and outpatient services, across the entire Trust in October 2014 one patient, one record for all CUH patients¹. In June 2017 CUH launched the MyChart patient portal. Through 2018 CUH deployed interoperability between *eHospital* and primary care, diagnostic services and acute care organizations in the UK and internationally. CUH is a HIMSS level 6 EMRAM organization, has won many national and international awards, and is recognized is a NHS Global Digital Exemplar organization.
- eHospital has enabled CUH to transform clinical processes from paper-based to fully digital ways of recording care and accessing information; supported by medical device integration, as well as handheld/mobile device integration to enable care to be recorded in real-time at the bedside. eHospital is connected to national systems such as the NHS Spine (national personal demographics service) and e-Referral Service from primary care to secondary care.
- CUH used **SNOMED CT** for coding diagnoses, symptoms and problems in their *eHospital* system, key data that is used for many inpatient and outpatient clinical processes. In addition, this data is used for advanced analytics and research².
- 1. Cambridge University Hospitals NHS Foundation Trust., "eHospital Patients at the Heart of Our Digital Hospital", See a 28 page summary of the project at https://www.cuh.nhs.uk/sites/default/files/misc/Brochure eHospital Website%20Version September%202019.pdf
- 2. Drumright, O'Neill, Chaudhry "Changing What We Do". A presentation about the Cambridge University Hospitals eHospital project and the links to the Cambridge Biomedical Research Centre. See https://community.jisc.ac.uk/system/files/515/cambridge%20implementation%20nhs%20he%20forum%20june%202015%20FINAL.pdf

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

The CUH eHospital implementation has resulted in both a significant number of **patient service outcomes** (e.g. access and productivity gains) and **patient health outcomes** (e.g. reduction in adverse events, morbidity and mortality) benefits.

Key Quantitative Benefits Achieved³

- Chart Pulls £460,000 saved annually in staff time as paper patient records no longer require retrieval from medical records.
- <u>Nursing Productivity</u> £1.1m saved annually in nursing time as observations and medication administration are recorded directly into patient records at the bedside, using handheld devices connected to our EHR.
- <u>Adverse Drug Events</u> 850 significant adverse reactions prevented each year with electronic allergy-related prescribing alerts in our EHR triggering a change in medication prescriptions saving 2,450 bed days a year, equivalent to £0.98 million/year.
- <u>Medication Management</u> 100% recording of the indication for antibiotic prescribing leading to more meaningful antibiotic stewardship antibiotics are only prescribed if they are truly needed.
- Patient Health Outcomes 42% reduction in sepsis mortality with electronic sepsis alerts built into the EHR by the eHospital team.

^{3.} The CUH benefits detailed on this and subsequent pages are those that would use SNOMED CT encoded data as part of the clinical business process. CUH has also quantified other benefits (e.g. from medical devices) where SNOMED CT would not be used. These types of benefits have not been included in this case study.

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

Out-Patient Clinics

Using fully digital out-patient clinics has enabled CUH to improve patient care, safety and experience; and to make the running of the busy clinics much more effective and efficient.

- <u>Elimination of Paper</u>: 100% reduction in paper first referrals from GPs to the consultant-led clinics/services because the EHR is integrated with the NHS e-Referral service.
- <u>Appointment Efficiency Gains</u>: 4,500 clinic appointment slots per year were freed up in orthopedics for patients who absolutely need to come to hospital for treatment, because clinicians were able to view clinical notes and x-rays virtually (i.e. virtual fracture clinic) in the EHR to determine whether a patient needs an appointment, or not.
- <u>Effective Patient Communications</u>: 80% of clinic letters in pediatric gastroenterology are given to the parents at the end of clinic because data from the EHR is automatically combined into a structured letter.
- <u>Improved Clinic Throughput</u>: 20% more patients are being seen (i.e. capacity creation) in the surgical pre-assessment clinic as patients are able to complete their own initial documentation on a digital tablet, with the information then saved automatically to their health record within the EHR.

eHospital: A Clinical Information System

United Kingdom – Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

Emergency

Addenbrooke's Hospital is one of the busiest emergency (A&E) departments in the UK and is a Major Trauma Centre for the region. Quick and easy access to information is essential for all staff working in Emergency due to the high volume of patients being treated, twenty-four hours a day, seven days a week.

- <u>Elimination of Paper</u>: the administrative burden of urgently sourcing paper records for patients arriving in the emergency department has been completely eliminated.
- <u>Emergency Department Management Efficiency Gains</u>: a digital emergency department allows rapid access to the patients information in the EHR. Staff can see, at a glance, colour-coded information about: each patient; waiting time; which area and bed they are in; acuity level; early warning score with alerts; status of their emergency care pathway; when they were last reviewed by a clinician; and when assessments were completed.
- <u>Appointment Efficiency Gains</u>: Elimination of waiting for paper notes to be released from the emergency department before follow-up appointments can be booked.
- <u>Improved Coordination of Care</u>: Letters are automatically sent from the EHR to the patients' GP when the patient is admitted to an inpatient area from the emergency department.
- Improved Coordination of Care: Discharge summary letters are sent electronically from the EHR to the patient's GP within 24 hours of
 discharge from the emergency department.

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

Digital Theatres and Critical Care

In high dependency areas, like operating theatres and intensive care, a huge amount of data is created about severely unwell patients who are hooked up to ventilators, monitors, and other medical devices. Prior to having the EHR CHU clinical teams had to manually assimilate data from multiple sources and devices. Now, all of the physiological monitors and ventilators, in all 40 theatres,148 high-dependency areas and critical care beds, are connected to the EHR.

- <u>Staff Efficiency Gains</u>: data generated from medical devices is being automatically and continuously recorded directly into the EHR removing the need for manual transcription and associated errors a staff time saving equivalent to £2.6 million a year.
- <u>Theatre Throughput</u>: 18% increase in main theatre case volume (i.e. capacity creation) through faster theatre turnaround and analytics in the EHR.
- <u>Clinical Efficiency Gains</u>: a 30 minute reduction in our Rapid Response Team getting to patients across our hospitals that need them the most.
- <u>Improved Patient Outcomes</u>: 2-3 avoidable deaths prevented each year with electronic routine review of best practice for ventilator tidal volumes in the EHR.

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

Sepis "the Silent Killer"

Sepsis is a life-threatening condition that arises when the body responds to an infection by attacking its own tissues and organs. Every year in the UK approximately 250,000 people are affected by sepsis and it accounts for around 50,000 deaths, more than bowel, breast and prostate cancer combined. Research shows that for every hour delay in receiving antibiotics the risk of sepsis mortality increases by 8% - this is the sepsis risk.

- Improved Patient Care: 100% sepsis screening now occurs in the Emergency department.
- <u>Improved Patient Care</u>: 70% increase in patients receiving antibiotics for sepsis within 1 hour of arrival in Emergency with electronic sepsis alerts in our EHR.
- Improved Patient Care: 80% increase in patients receiving antibiotics for sepsis within 90 minutes of arrival in Emergency.
- <u>Improved Patient Care</u>: a 50% increase in adult inpatients receiving antibiotics for sepsis within both 60 and 90 minutes of the sepsis alert being triggered in the EHR.
- <u>Improved Patient Health Outcomes</u>: 42% reduction in sepsis mortality across the Trust. At least 64 lives saved in 2018 with sepsis alerts created in the EHR.

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

Clinical Data Sharing Requiring Interoperability of Clinical Information Systems

- Sharing the EHR beyond CUH Located 35 miles apart, approximately 30 per cent of patients attending CUH (i.e. Addenbrooke's and The Rosie) also present at the West Suffolk Hospital for care and treatment. In 2018 the CUH eHospital EHR (Epic) was connected to West Suffolk Hospital's Cerner Millennium EHR. At the push of a button, CUH clinicians are able to easily and securely access clinical information (i.e. conditions, treatments, and test results) about a patient that is held within West Suffolk Hospital EHR and vice-versa, enabling real-time information and data sharing to save time and reduce delays to care and unnecessary repeats of tests and procedures.
- This digital link also connects Cambridge University Hospitals with all hospitals across the world that use an Epic EHR to advance the care of their internationally shared patients.
- Finally CUH has integrated eHospital to Royal Papworth Hospital's Lorenzo system to enable the real-time sharing of test results as soon as they have been verified in CUH laboratories.
- Separately, CUH has been working with NHS Digital⁴ to develop and test a new FHIR medication specific message that will be used to share medication information between GPs and hospitals. This has meant testing the functionality and all possible varieties of medication prescriptions to ensure that the structure of the medication data can meaningfully and safely convey the clinical message. Some elements of the message are human readable text, but there is also coded data using **SNOMED CT** and dm+d codes.

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

Patient Portal – clinical information sharing that allows CUH patients digital access to their health information

- <u>Electronic Record</u> A patient's eHospital information is available to them electronically via Epic MyChart instead of being posted to them: appointment letters /past appointment details; current health problems/conditions; clinic letters/clinical correspondence; vital signs (weight, height, blood pressure, temperature, pulse, respiratory rate); test results; medications; known allergies.
- <u>Access 24x7</u> Patients can access their information in MyChart anytime and anywhere. In the comfort of their own home they can access it on a desktop computer or laptop, or when on the move, at CUH hospitals or abroad via the 'MyChart' app for tablet and Smartphone devices. MyChart is also compatible with screen readers for visually impaired patients.
- <u>Effective Appointments</u> CUH patients can also complete pre-appointment questionnaires electronically within MyChart, with the results then being discussed during their next clinic appointment. This makes appointments much more effective as our patients and clinicians spend more time discussing care and treatment plans together.
- <u>Reduce Patient Visits</u> Empowering CUH patients to contribute to their health record, MyChart encourages our patients to contribute to their health information without having to make unnecessary visits to CUH hospitals. For example, if patients have been prescribed new medication by their GP, they can add the medication name, dose and frequency to their record via MyChart for discussion with their clinical team during their next hospital appointment.
- As of December 2019 23,000+ patients are using CUH MyChart. See CUH patient Allan Craig's experience on the next page.

eHospital: A Clinical Information System

United Kingdom - Cambridge University Hospitals NHS Foundation Trust, Cambridge, England

I have always played an active role in my own treatment and like to understand my conditions. I have a range of medical problems, which started in 1969 when I was diagnosed with polycystic kidney disease. My blood pressure was controlled for a long time to help delay the need for dialysis treatment before I eventually had a successful kidney transplant in 1989. I was diagnosed with a serious heart condition and underwent a quadruple bypass and aortic valve replacement in 1999. As a result of the drugs I have to take following my transplant, I've also suffered with osteoporosis, abdominal hernias, basal cell carcinomas and several hematomas. I like to work with my clinicians in the management of my health conditions, which was why the MyChart patient portal particularly appealed to me. MyChart allows me to view my upcoming hospital appointments, details of past appointments and hospital visits, clinical letters from my doctors and my test results. I like how I can also access a health summary page, either on my computer at home or on my smartphone, which includes a full list of my medications, as well as links to further information to help me to manage my conditions. Having all the information available in one place, explained in plain English, is really useful for patients like me, especially when I am regularly in and out of hospital and using other healthcare services. I can access MyChart from anywhere in the world with an internet connection, which gives me peace of mind when I want to travel because if I were to need medical help in another part of the UK or abroad, I can log in using my smartphone and show my information to those clinicians caring for me. Having my health information to hand has helped me to better manage my conditions and I believe that patient awareness and involvement contributes to a more joined-up health care system.

Transplant patient and user of MyChart,

Alan Craig talks about his experiences

Case Studies

Case for Investment

SNOMED

Health Pathways

HealthPathways is an evidence-based clinical pathway designed to improve GP confidence in managing complex conditions, improve referral appropriateness, and reduce unnecessary care. It was originally developed in 2008 by the Canterbury Initiative (New Zealand) and now has 40 deployments in New Zealand, Australia and the UK. Over 600 clinical pathways have been developed collaboratively by general practitioners, specialists, nurses, and allied health professionals across all sectors and are then tailored to the local context. HealthPathways uses SNOMED CT concepts, synonyms and hierarchies.

HealthPathways is widely used in Australia due to the popularity among general practitioners and its ease of use. The Mackay (Queensland) HealthPathways went live in June 2015, a joint implementation by the Northern Queensland Primary Health Network and the Mackay Hospital and Health Service.

Referral Findings

Following the deployment of SNOMED CT–embedded HealthPathways there had been reductions in diabetes and cardiology referrals from both primary care and specialist referral sources, and the percentage of appropriate referrals for diabetes had increased significantly.

Economic Impact

There was early evidence in Mackay of reduced demand for specialist services. The short-term impact was the reduction in waiting lists by up to 67% for fully implemented pathways such as Diabetes. The researchers predict that if the Diabetes gold-standard implementation was replicated across other disease groups an average annual systemic cost saving of approximately \$110,500 per pathway is possible. Further, it was estimated that a gold-standard implementation is required for just 4 Pathways before the program is cost-saving, and 6 gold-standard HealthPathways implementations will pay off the initial investment within a year.

Northern Queensland PHN and the Mackay Hospital and Health Service

For the detailed Northern Queensland PHN and MacKay Hospital and Health Service Case Study see Appendix 5 here

Care Pathways Economic Analysis

> Table of Contents

Care Pathways Economic Analysis

Australia – HealthPathways Economic Analysis in Mackay, Queensland

- HealthPathways is an evidence-based clinical pathway that enables general practitioners (GPs) to better manage the interface between primary care, community services, and hospital services. It was originally developed in 2008 by the Canterbury Initiative (New Zealand) and now has 40 deployments in 3 countries (i.e. New Zealand, Australia and UK).
- The pathways (i.e. over 600 clinical pathways have been developed to date) are developed collaboratively by general practitioners, specialists, nurses, and allied health professionals across all sectors and are tailored to the local context. The HealthPathways search function uses **SNOMED CT** concepts, synonyms and hierarchies.
- HealthPathways is designed to improve GP confidence in managing complex conditions, improve referral appropriateness, and reduce unnecessary care all patient service outcomes.
- HealthPathways is widely used in Australia due to the popularity among general practitioners and its ease of use. The Mackay (Queensland) HealthPathways went live in June 2015, a joint implementation by the Northern Queensland Primary Health Network and the Mackay Hospital and Health Service. An economic evaluation of the Mackay HealthPathways implementation was conducted by the Australian Centre for Health Services Innovation in 2018¹.
- The researchers analyzed every outpatient specialist appointment referred from primary care between January and March in 2015 (pre-Pathways) and 2017 (post-Pathways) for diabetes (full implementation), cardiology (partial implementation), respiratory (partial implementation) and urology (no implementation: the control group).

^{1.} Blythe et al., "HealthPathways: An Economic Analysis of the Impact of Primary Care Pathways in Mackay, Queensland", 2019. See https://www.healthpathwayscommunity.org/News/Latest-Community-News/ArticleID/1356/Information-systems-supporting-integrated-care

Care Pathways Economic Analysis

Australia – HealthPathways Economic Analysis in MacKay, Queensland (continued)

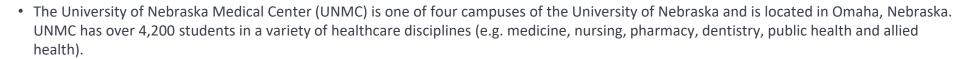
Referral Findings

• The analysis found that following implementation there had been reductions in diabetes and cardiology referrals from both primary care and specialist referral sources. Further, the analysis found that the percentage of <u>appropriate</u> referrals for diabetes had increased significantly following the introduction of HealthPathways. For the other disease groups the change in appropriate referrals was not significant.

Economic Impact

- The report concluded that given the difference in patterns between diabetes (full implementation) and urology (the control group), there was early evidence for the long term effectiveness of HealthPathways in Mackay through reduced demand for specialist services. The short-term impact is the reduction in waiting lists by up to 67% for fully and successfully implemented pathways such as Diabetes.
- The report speculates that if the Diabetes gold-standard implementation was replicated across other disease groups an average annual systemic cost saving of approximately \$110,500 per pathway is potentially possible. Further, it was estimated that a gold-standard implementation is required for just 4 Pathways before the program is cost-saving, and 6 gold-standard Pathways will pay off its initial investment within a year in system-wide savings.
- As of November 2018, there was 36 different disease groups supported by HealthPathways, and a long-term change to practice involving comprehensive use of HealthPathways could potentially save upwards of \$3,600,000 annually in Mackay alone after deducting the costs of maintaining the program. HealthPathways has now been deployed across Queensland.

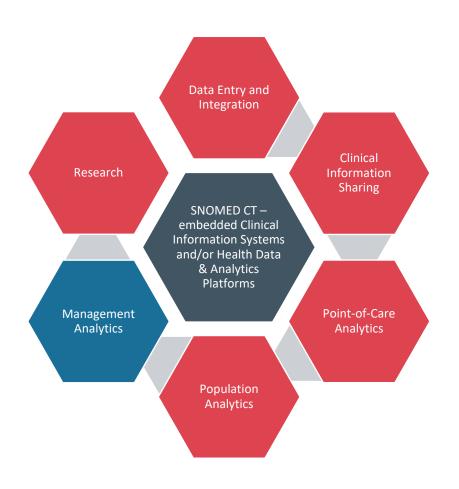
Care Pathways Economic Analysis


HealthPathways – Other Selected Studies

- 1. Canterbury District Health Board (New Zealand), "Case Study-Improving Patient Flow from Gynecology Services to the Whole of System". See study URL at https://researchbibliography.streamliners.co.nz/bibliography/NYP4IDP6
- 2. Holland et al, "A multifaceted intervention to improve primary care radiology referral quality and value in Canterbury, NZ", New Zealand Medical Journal, 2017. See https://www.nzma.org.nz/journal-articles/a-multifaceted-intervention-to-improve-primary-care-radiology-referral-quality-and-value-in-canterbury
- 3. Andrews et al, "Evaluation of 3D HealthPathways", Synergia, 2018. See https://www.ccdhb.org.nz/about-us/integrated-care-collaborative-alliance/3dhb-health-pathways/healthpathways-report-final-26-june-2018.pdf
- 4. McGeoch et al., "Is HealthPathways Effective An Online Survey of Hospital Clinicians, General Practitioners and Practice Nurses" New Zealand Medical Journal, 2015. See https://www.nzma.org.nz/journal-articles/is-healthpathways-effective-an-online-survey-of-hospital-clinicians-general-practitioners-and-practice-nurses
- 5. Norid et al, University of Sydney, "HealthPathways Sydney Evaluation" March 2019. See study URL at https://researchbibliography.streamliners.co.nz/bibliography/?topic=HealthPathways+Evaluation&type=report&page=1&page-len=1&sort=date_desc

Case for Investment Case Studies

University of Nebraska Medical Center



- UNMC has a clinical partnership with Nebraska Medicine which covers metro Omaha and region providing access to more than 1,000 doctors and nearly 40 specialty and primary care health centers. Two hospitals, Nebraska Medical Center and Bellevue Medical Center have more than 800 licensed beds.
- Nebraska Medicine implemented the Epic clinical information system (called One Chart), including a patient portal in 2013. The data from Epic and other sources (e.g. Biobank, Cancer Registry) are extracted and loaded into the i2b2 data warehouse and analytics platform at UNMC and then made available for clinical and translational research.
- The challenge with i2b2 is that it very difficult to render poly-hierarchical terminologies such as SNOMED CT in the platform. UNMC is collaborating with the Veterans Health Administration and their SOLOR⁷ initiative to integrate the "Big Three" terminologies in the U.S. (i.e. SNOMED CT, LOINC and RxNorm) into a common ontology for use in the i2b2 platform.
- UNMC has also created SNOMED CT terminology extensions (i.e. the Nebraska Lexicon) for: genomics data sets supporting care; detailed coding of Cancer Synoptic data, thereby expanding the UNMC cancer registry; expanded SNOMED CT coverage of the organisms hierarchy that is integrated with laboratory coding for microbiology this feature supports 13 healthcare centers across Nebraska with decision support capabilities for antimicrobial stewardship; and extended analytics capabilities of SNOMED CT observables for laboratory medicine this feature supports advanced querying of the laboratory database for research and quality improvement.
- UNMC and its i2b2 platform supports three streams of research:
 - 1. National PCORnet sponsored research UNMC provides query response and datasets for approximately 100-125 research projects annually.
 - 2. National COVID Cohort Collaborative UNMC sends data extracts for national COVID-19 research to a central research repository about 25-30 times a year, since June 2020.
 - 3. Nebraska Medicine UNMC supports approximately active 25-35 investigator-initiated research projects annually.

University of Nebraska Medical Centre

Clinical and Translational Research

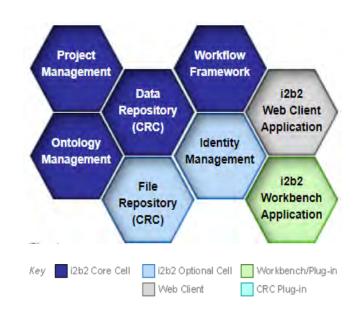
Clinical and Translational Research

United States – University of Nebraska Medical Center, Nebraska, USA.

- Founded in 1869 and chartered as the Omaha Medical College in 1881, the college became part of the University of Nebraska in 1902. The University of Nebraska Medical Center (UNMC)¹ is now one of four campuses of the University of Nebraska and is located on Omaha, Nebraska. UNMC has over 4,200 students in a variety of healthcare disciplines (e.g. medicine, nursing, pharmacy, dentistry, public health and allied health).
- UNMC has a clinical partnership with Nebraska Medicine² which covers metro Omaha
 and region providing access to more than 1,000 doctors and nearly 40 specialty and
 primary care health centers. Two hospitals, Nebraska Medical Center and Bellevue
 Medical Center have more than 800 licensed beds. Nebraska Medical Center is regularly
 ranked in the top 50 Hospitals in the U.S.
- Nebraska Medicine implemented the Epic clinical information system (called One Chart), including a patient portal in 2013. Clinical data is entered directly or integrated from other sources (e.g. Sunquest COPATH Anatomic Pathology laboratory system). See the architecture example for Structured Pathology Reporting in the diagram to the right.
- The data from Epic and other sources (e.g. Biobank, Cancer Registry) are extracted and loaded into the i2b2 data warehouse and analytics platform at UNMC and then made available for clinical and translational research.

Nebraska Structured Pathology Reporting Molecula Labs Epic FISH Interface Engine Clarity COPATH Anatomic Research Pathology ETL Genom-SEER Oncology **NECares** Registry Biobank NAACCR Ion Torrent Sequencer

- 1. University of Nebraska Medical Center. See https://www.unmc.edu/
- 2. Nebraska Medicine. See https://www.nebraskamed.com/



Clinical and Translational Research

United States – University of Nebraska Medical Center, Nebraska, USA.

- i2b2 (*Informatics for Integrating Biology and the Bedside*)³ is an open-source health research data warehouse and analytics platform, originally funded by the National Institutes of Health and developed at the Harvard Medical School. It is now used at over 200 healthcare locations worldwide.
- The i2b2 data warehouse and analytics platform consists of a core cell and a number of optional plug-ins (i.e. file repository, identity management, web client application and the workbench application). Ontology management is part of the core cell and is where SNOMED CT is deployed.
- i2b2's data model is a "star-schema", but does not use a standardized data model (e.g. as with OMOP³ and PCORnet⁴). Local implementations develop concept hierarchies (called "ontologies") that provide a window into the imported data.

• Data in i2b2 can be queried by a cohort query tool with analytics plugins. For example, the query tool is used by Nebraska Medicine investigators to rapidly assess the feasibility of a research project, as well as prototype data management strategies.

^{3.} I2b2 Informatics for Integrating Biology & the Bedside. See https://www.i2b2.org/

^{4.} Nebraska Medicine. See https://www.nebraskamed.com/

^{5.} The Observational Medical Outcomes Partnership (OMOP). See https://fnih.org/what-we-do/major-completed-programs/omop

^{6.} Patient-Centered Clinical Research Network (PCORnet). See https://pcornet.org/

Clinical and Translational Research

United States – University of Nebraska Medical Center, Nebraska, USA.

- The challenge with i2b2 is that it very difficult to render poly-hierarchical terminologies such as SNOMED CT in the platform. Each concept in a path in i2b2 metadata can only have a single parent, whereas the SNOMED CT concept model concepts can have multiple parent concepts. UNMC has had to develop a work-around so that SNOMED CT can be reliably represented as a single hierarchy and used in i2b2 for research purposes.
- UNMC has created SNOMED CT terminology extensions (i.e. the Nebraska Lexicon) for
 - · genomics data sets supporting care,
 - detailed coding of Cancer Synoptic data, thereby expanding the UNMC cancer registry,
 - expanded SNOMED CT coverage of the organisms hierarchy that is integrated with laboratory coding for microbiology. This feature supports 13 healthcare centers across Nebraska with decision support capabilities for antimicrobial stewardship.
 - extended analytics capabilities of SNOMED CT observables for laboratory medicine. This feature supports advanced querying of the laboratory database for research and quality improvement.
- UNMC is collaborating with the Veterans Health Administration and their SOLOR⁷ initiative to integrate the "Big Three" terminologies in the U.S. (i.e. SNOMED CT, LOINC and RxNorm) into a common ontology for use in the i2b2 platform. In addition, UNMC has invested significant resources in collaborations with the National Library of Medicine, Regenstrief Institute and SNOMED International to support the integration of these three terminologies and are a leader in this field.

Clinical and Translational Research

United States – University of Nebraska Medical Center, Nebraska, USA.

- Research Activities Supported UNMC and its i2b2 platform supports three streams of research:
 - 1. National PCORnet (see call-out box) sponsored research UNMC provides query response and datasets for approximately 100-125 research projects annually. (see https://pcornet.org/)
 - 2. National COVID Cohort Collaborative UNMC sends data extracts for national COVID-19 research to a central research repository about 25-30 times a year, since June 2020. (see https://ncats.nih.gov/n3c)
 - 3. Nebraska Medicine UNMC supports approximately active 25-35 investigator-initiated research projects annually.

PCORnet or the *Patient-Centered Clinical Research Network* is a research "networks of networks" across the United States. It includes 8 large Clinical Research Networks, 2 Health Plan Research Networks, and a Coordinating Center. For example, UNMC is part of the Greater Plains Collaborative (GPC), one of the eight clinical research networks. GPC includes 12 leading medical centers in 8 states, for example, University of Kansas Medical Center, Allina Health, Indiana University, Intermountain Healthcare, and the University of Iowa Healthcare.

Case for Investment

OHDSI

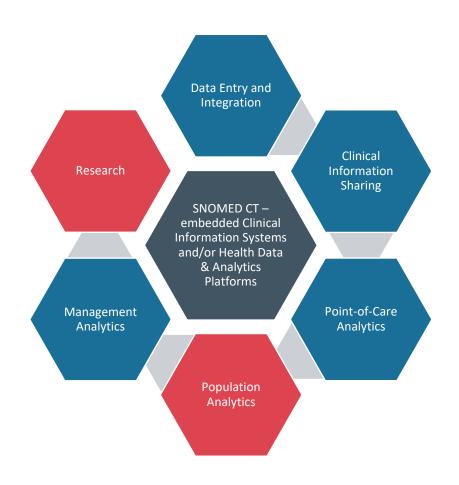
OHDSI is an international network of researchers and observational health databases. OHDSI develops health care evidence through methodological research, open-source analytics development, and clinical evidence generation. OHDSI provides access to over 100 different databases, with half a billion patient records from 19 different countries.

OMOP CDM

OHDSI has developed the SNOMED CT-embedded OMOP Common Data Model (CDM) for its data platform as a global standard for patient and population observational research. It is positioned at level 4/5 on the SNOMED CT maturity model.

OHDSI Research

Examples of OHDSI search using the SNOMED CT-embedded OMOP CDM include:


- OHDSI Hydroxychloroquine Safety Study Completed in Four Days In March 2020 a team of researchers from around the world analyzed the safety profile of hydroxychloroquine to treat COVID-19. The team used data from 14 datasets to analyze the medical history of over 950,000 patients from 6 countries who had previously taken hydroxychloroquine. They found the medication to be safe for short-term use in doses used for other diseases. But, when prescribed in combination with azithromycin, it may induce heart failure and cardiovascular mortality and they urged caution in using the two together.
- OHDSI Hypertension Study A 2019 OHDSI study compared chlorthalidone and hydrochlorothiazide for treating hypertension using 3 large observational databases of patients from the United States. The findings contrast with current treatment guidelines recommending chlorthalidone over hydrochlorothiazide. The researchers found that patients taking chlorthalidone had nearly three times the risk of developing dangerously low levels of potassium and a greater risk of other electrolyte imbalances and kidney problems compared with those taking hydrochlorothiazide.

OHDSI research studies using SNOMED CT on knee replacements and cervical cancer risks further described in Appendix 5 here

Observational Data Research

> Table of Contents

Observational Data Research

Observational Health Data Sciences and Informatics (OHDSI), Columbia University, New York, USA.

- OHDSI¹ is an international network of researchers and observational health databases with a central coordinating centre housed at Columbia University in New York. Currently, OHDSI strives to develop reliable real world, health care evidence through methodological research, open-source analytics development, and clinical evidence generation.
- OHDSI provides access to over 100 different databases, with half a billion patient records from 19 different countries, with more than 200 million patient records from outside the U.S. All its solutions are open source. Observational research using OHDSI solutions starts with observational data, gathered through various populations, care settings, data capture processes, and health systems. By converting that data through the OMOP Common Data Model (CDM), the research can create three types of evidence: clinical characterization; population-level effect estimation, and patient-level prediction.
- OHDSI developed the OMOP CDM, as a global standard for observational research. As part of the CDM, the OMOP Standardized Vocabularies are available for two main purposes: common repository of all vocabularies used in the health care community; as well as standardization and mapping for use in research.
- Similar to **SNOMED CT** all clinical events in the OMOP CDM are expressed as concepts, which represent the semantic notion of each event. **SNOMED CT** is used as a standard concept in five of the seven data domains condition, procedure, measurement, device and observation. Like **SNOMED CT**, the OMOP CDM represents relationships in a hierarchy through 'is a" statements, as well as attribute relationships among concept hierarchies, so the OHDSI OMOP CDM is at level 4/5 on the **SNOMED CT** maturity model.

Observational Data Research

OHDSI Hydroxychloroquine Safety Study² Completed in Four Days

- In the face of rapid spread and escalation of the coronavirus, many decisions are being made quickly and a number of therapies are being trialed for its treatment. One of these is the use of hydroxychloroquine, a drug approved in 1950s. The drug has been used for malaria, lupus and rheumatoid arthritis. However, physicians have been using it off label for COVID-19 and in the past weeks the FDA has approved the use of the drug for compassionate use in the treatment of COVID-19. Despite the lack of evidence of its clinical effectiveness, U.S. President Donald Trump says the drug has shown "very encouraging results" in treating COVID-19. More research needed to be done based on these claims.
- Over 4 days in March 2020, Professor Dani Prieto-Alhambra, Professor of Pharmaco-and Device Epidemiology at the Centre for
 Statistics in Medicine at Oxford University in England and a team of researchers from around the world set out to analyze the safety
 profile of hydroxychloroquine. The team used data from fourteen datasets to analyze the medical history of over 950,000 patients who
 have previously taken hydroxychloroquine. Patient data came from six countries: Germany, Japan, the Netherlands, Spain, the UK and
 the USA.
- First, they found it to be a <u>safe</u> medication for short-term use. When administered at the doses used for current indications like rheumatoid arthritis, they did not detect any worrying side effects. However, when prescribed in combination with azithromycin, it may induce heart failure and cardiovascular mortality and they urged caution in using the two together. It was noted that there is a lack of sufficient data at higher doses, and hence it is too early to understand the clinical effectiveness in treating COVID-19. Formal clinical trials in this regard are ongoing.

^{2.} Lane et al., "Safety of hydroxychloroquine, alone and in combination with azithromycin, in light of rapid wide-spread use for COVID-19: a multinational, network cohort and self-controlled case series study". Medrxiv, May 31, 2020. See preprint at https://www.medrxiv.org/content/10.1101/2020.04.08.20054551v2.full.pdf

Observational Data Research

OHDSI Hypertension Study - Recommended Diuretic Causes More Side Effects than a Similar Hypertension Drug

- The 2017 American College of Cardiology/American Heart Association hypertension guideline recommends thiazide and thiazidelike diuretics as one of the first-line treatment classes for hypertension. Hydrochlorothiazide is the most commonly prescribed member of the class, but the guideline states that chlorthalidone is preferred on the basis of longer half-life and proven trial reduction of cardiovascular disease. However, there are no large, completed randomized clinical trials comparing these medications, although one is in progress.
- A recent OHDSI study³ compared chlorthalidone and hydrochlorothiazide on 55 outcomes in 3 large observational databases of patients from the United States. The findings contrast with current treatment guidelines recommending chlorthalidone over hydrochlorothiazide. Chlorthalidone, the guideline-recommended diuretic for lowering blood pressure, causes more serious side effects than hydrochlorothiazide, a similarly effective diuretic, according to the OHDSI study.
- The researchers found that patients taking chlorthalidone had nearly three times the risk of developing dangerously low levels of potassium and a greater risk of other electrolyte imbalances and kidney problems compared with those taking hydrochlorothiazide. Information from the largest individual database studied by the team revealed that 6.3% of patients treated with chlorthalidone experienced hypokalemia (low blood potassium), compared with 1.9% of patients who were treated with hydrochlorothiazide.

Observational Data Research

EHDEN-OHDSI Knee Replacement Study

- The IMI European Health Data & Evidence Network (EHDEN) project and OHSDI recently published the results of its first 'study-a-thon' in Lancet Rheumatology on the effectiveness and safety associated with uni-compartmental versus total knee replacement⁴. This was the largest study to date with data on more than 250,000 individuals who underwent either procedure in five databases from the US and the UK.
- The choice of which type of knee replacement to recommend remains difficult for surgeons, and there remains insufficient information to inform them and patients of the best approach, dependent on the patient's personal context.
- The study emulated to the extent possible, the design of the five year Total or Partial Knee Arthroplasty Trial (TOPKAT). The study-athon assessed whether the efficacy results seen in the trial translated into effectiveness in real-world settings and provided further consideration of safety outcomes that were too uncommon to assess in TOPKAT.
- Uni-compartmental knee replacement was associated with a reduced risk of complications, in particular venous thromboembolism, and persistent opioid use, possibly indicating a reduced risk of persistent pain after surgery. Total knee replacement was, however, associated with a lower risk of revision procedures, and the need to repair or replace the original replacement.

Observational Data Research

OHDSI Cervical Cancer Risk Study - Cervical Cancer Risk Decreases In Users Of Copper IUDs vs. Hormonal IUDs -

- Studies from the 1980s suggested a reduced risk of cervical cancer among women who used an intrauterine contraceptive, though those studies did not differentiate between the varying types of IUDs. Furthermore, much of the data from those studies was collected prior to the availability of most hormonal IUDs.
- By standardizing four decades' worth of data from the Columbia University Irving Medical Center database through the OMOP Common Data Model and using high-level analytics developed within the OHDSI collaboration, the research team ran a retrospective cohort analysis of more than 10,000 patients who received IUDs.
- Overall, IUD use has become more popular over the past 20 years. Copper IUD use has remained constant whereas hormonal IUD use has increased. The rising popularity of hormonal IUDs may be related to the fact that they decrease the pain and bleeding of menses.
- The study⁵ found that the diagnosis of high-grade cervical neoplasia was 0.7% in the copper IUD (Cu IUD) cohort and 1.8% in the hormonal IUD (LNG-IUS) cohort.
- In conclusion, patients who used copper intrauterine devices (Cu IUD) were found to have a lower risk of high-grade cervical neoplasms (cervical cancer) compared to users of the levonorgestrel-releasing intrauterine system (LNG-IUS).

^{5.} Spotnitz al., "Relative Risk of Cervical Neoplasms Among Copper and Levonorgestrel-Releasing Intrauterine System Users". Obstetrics and Gynecology, February, 2020. See https://journals.lww.com/greenjournal/Fulltext/2020/02000/Relative Risk of Cervical Neoplasms Among Copper.11.aspx

Case for Investment

Case Studies

Honghu Public Health Surveillance System As a rapid response to the COVID-19 outbreak in China a public health surveillance system was developed and deployed within 72 hours in Honghu, Hubei province, a city of over 900,000 people, and 145 kilometers (90 miles) from Wuhan. This system collected daily, structured electronic medical record data from nine hospitals; real time information about symptoms and personal contact history from the WeChat social media platform; and daily reported case diagnosis information from labs and a public health information system. The high coverage (over 95% of residents) and daily active reports demonstrated the feasibility of intense monitoring during the COVID-19 epidemic.

The data feeds were loaded into a health data platform with a common data model that was built for the storage, management, and analysis of the integrated COVID-19 data. Vocabulary control in the data platform was achieved by using SNOMED CT Chinese synonyms for symptoms and the disease, and LOINC for tests.

COVID-19 Control

The data was used by policy makers to strengthen the checkpoints on the full chain of COVID-19 control, including "early test, early report, early isolation, early support and early treatment" during the outbreak.

Mortality Prediction In addition, using the medical record data an in-hospital mortality prediction model was created for patients with COVID-19 to improve the clinical care, decrease death risk, and prioritize limited medical resources. About 10% of patients were classified as high-risk. They were either relocated to the single hospital in the area that had an intensive care unit or screened with important biochemical markers more frequently.

Case Management

The WeChat social media platform was also used to register discharged patients and have them report their symptoms daily in the 2 months after discharge. 100% coverage was achieved within 3 days.

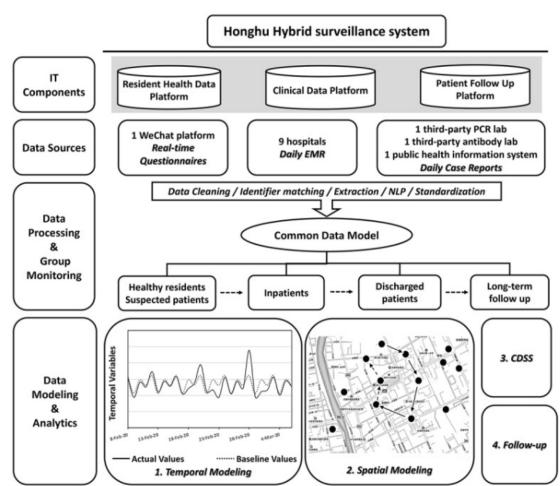
Honghu Public Health Surveillance System Further details on the Honghu Public Health Surveillance System Case Study are included in Appendix 5 here.

Public Health Surveillance

Public Health Surveillance

China – Public Health (COVID-19) Surveillance in Honghu, Hubei.

- The outbreak of the coronavirus disease (COVID-19) in China and many other countries has put huge pressure on the health care system. One method of controlling the communicable diseases is the use of a surveillance system to track the exposed and infected individuals, as well as clinical outcomes. However, traditional surveillance systems have limitations in terms of timeliness, spatial resolution, and scalability. Meanwhile, reporting from these systems tends to be national or regional with insufficient information about diseases at the community or city level, which caused low efficiency for the social distancing and quarantine measures.
- In response to this significant challenge the Honghu Hybrid System (HHS) was developed at a cost of USD\$430,000 as a pilot for COVID-19 surveillance and control. It was successfully deployed within 72 hours in Honghu in the Hubei province, a city 145 kilometers (90 miles) away from Wuhan (the capital city of the Hubei province) with a population of over 900,000 people.
- This system (see schematic overleaf) collected daily structured electronic medical record data from nine hospitals; real time information about symptoms and personal contact history from the WeChat platform (one of the largest mobile social network apps in China with more than 1 billion monthly active users); and daily reported case diagnosis information from one third-party polymerase chain reaction lab, one third-party antibody lab, and one public health information system. A novel mini program using the WeChat platform software development kit was created for symptom reporting and spatial data collection.



Public Health Surveillance

China – Public Health Surveillance in Honghu, Hubei.

- The data feeds were normalized temporally and spatially and then loaded into a common data model that had been built for the storage, management, and analysis of the integrated COVID-19 data.
- Vocabulary control was implemented based on the SNOMED CT synonyms in Chinese for symptoms and the disease itself. LOINC was used to code-related tests and ICD-10 CM codes for the diseases based on the coding standards released by the National Health Commission of China.
- Syndromic surveillance was implemented on a mobile phone—based social media platform targeting different groups of individuals (e.g. I am experiencing a cough today). This included the general population, in hospital and discharged patients, people with higher risk of infection (i.e. those with travel history to Wuhan, contact history with confirmed cases, or under medical observation in isolation sites), and health care professionals (i.e., doctors, nurses, public health experts, and social workers).


Public Health Surveillance

China – Public Health (COVID-19) Surveillance in Honghu, Hubei.

• The high coverage (over 95% of the residents) and daily active reports (up to 900,000 person-times) demonstrated the feasibility of intense monitoring during the COVID-19 epidemic.

Policy Making Decision Support

 Monitoring the fluctuation and trends analysis of the syndromic surveillance data supported policy-related decision making. The large population size, plus the stability and fluctuation of the trends provided strong evidence for local authorities to evaluate the effectiveness of disease management and make timely adjustments accordingly. Spatial analyses also played a critical role as clustering of exposed residents indicated by the concentration of patients in a part of the city further illustrated high risk for local outbreaks and would then trigger home visits by social workers.

Public Health Surveillance

China – Public Health (COVID-19) Surveillance in Honghu, Hubei.

Clinical Decision Support and Resource Management

A clinical decision support system based on an in-hospital mortality prediction system was built for patients with COVID-19 to improve
the clinical care, decrease death risk, and prioritize limited medical resources. Based on the Multilobular Infiltration, HypoLymphocytosis, Bacterial Coinfection, Smoking History, Hyper-Tension and Age (MuLBSTA) scoring system, which is a partially validated
prediction system for the in-hospital mortality of patients with COVID-19. About 10% of patients were classified as high-risk (MuLBSTA
score ≥12). They were either relocated to the single hospital in the area that had an intensive care unit or screened with important
biochemical markers more frequently.

Follow-up of Discharged Patients

• We used the social media platform to register the discharged patients and required the patients to report their symptoms daily in the 2 months after discharge. After the follow-up system was initiated, 100% coverage was achieved within 3 days. The reported recurrence of symptoms such as high fever was linked with home visits by social workers inside communities and readmission to hospital.

Conclusion

• Based on the field study in Honghu city, the Honghu Hybrid System has been observed to be effective and feasible for COVID-19 surveillance and control. It helped strengthen the checkpoints on the full chain of COVID-19 control, including "early test, early report, early isolation, and early treatment" during the outbreak.

Case Studies

Case for Investment

Al in Healthcare

All has been used in healthcare for decades. However, the increasing capture of data electronically in clinical information systems, the increase in personal data captured through devices, sensors, imaging or genomics and the increase in computing power available – either through cloud-based computing platforms or on the phones in our pockets – is enabling a new generation of applications of AI through-out the healthcare system. AI in healthcare is now a growth market.

Australian Efforts

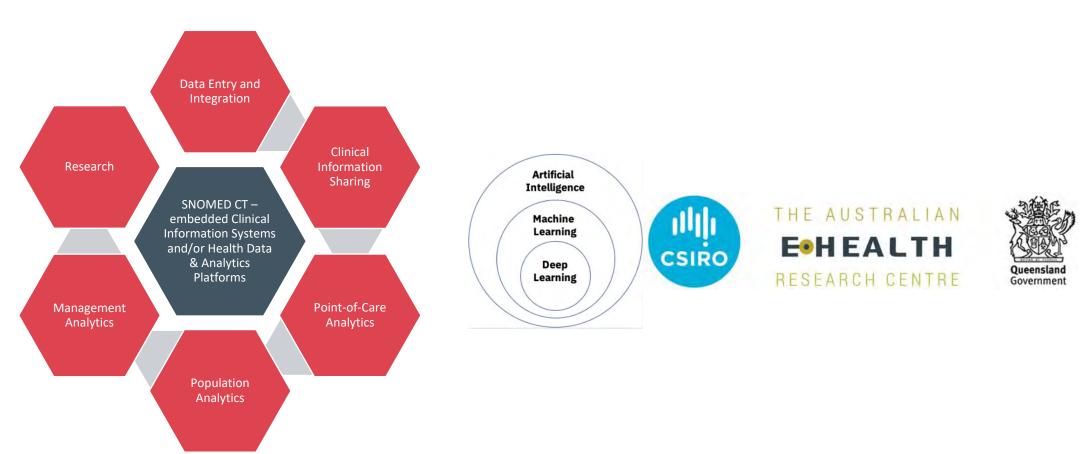
The Australian eHealth Research Centre (AEHRC) and CSIRO Australia have focused on researching exemplars of AI/ML in healthcare, including the use of SNOMED CT. They developed 34 case studies in four domains.

SNOMED CT and AI/ML

Using the Australian experience, SNOMED CT is positioned to support AI/ML in three of the domains:

- Predictive Analytics and Data-Driven Intelligence: Example, using SNOMED CT to help stratify the patient risk for re-hospitalization, thereby providing improved detection and management of patients at risk of readmission.
- Knowledge Representation and Reasoning: Examples, developing AI tools to support SNOMED CT terminology deployment (e.g. Snorocket reasoner); as well as using SNOMED CT for advanced analytics of genomic phenotype data using Pathling.
- Human Language Understanding: Examples, using NLP and SNOMED CT to enhance data quality in cancer registries; using NLP, SNOMED CT and AI solutions to check radiology reports for missed fractures; using NLP and SNOMED CT to review antibiotic prescriptions in discharge summaries and microbiology test results for antimicrobial resistance.

Looking Forward


Looking forward, the full power of SNOMED CT comes from using its semantic network, which is perfectly positioned to support Symbolic AI opportunities in healthcare.

Further details on the AEHRC and CSIRO Case Study are included in Appendix 5 here.

AEHRC and CSIRO Australia

Artificial Intelligence: A Look into Now and a Peek into the Future

> Table of Contents

Artificial Intelligence: A Look into Now and a Peek into the Future

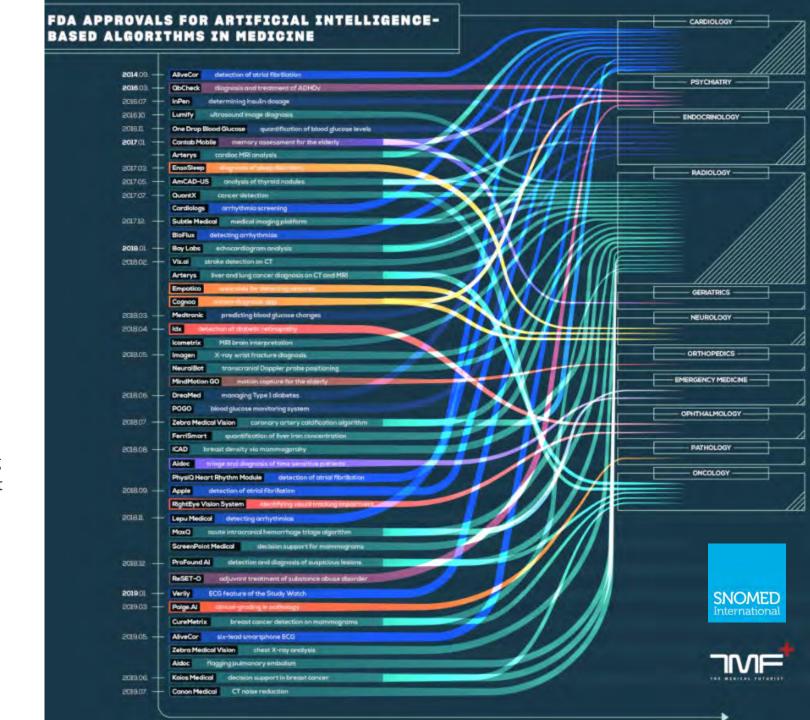
Artificial Intelligence in Healthcare Globally

- Artificial Intelligence (AI) is simply defined by Merriam-Webster online as "1: a branch of computer science dealing with the simulation of intelligent behavior in computers, 2: the capability of a machine to imitate intelligent human behavior".
- Many nations and regions around the world (e.g. US, Europe, UK, China) have been actively looking at the future role of artificial intelligence generally, as well as its use in healthcare specificially^{1,2,3,4,5,6,7}.
- As part of these reviews the impact on society (see table on right), organizations and the nations'
 workforce have also been considered.
- 1. Matheny, M. et al., "Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril". Washington, DC: National Academy of Medicine, 2019. See https://nam.edu/wp-content/uploads/2019/12/Al-in-Health-Care-PREPUB-FINAL.pdf
- 2. U.S. Government Accountability Office and the National Academy of Medicine, "Artificial Intelligence in Healthcare: Benefits and Challenges of Machine Learning in Drug Development" GAO-20-215SP, 2019. See https://www.gao.gov/products/gao-20-215sp
- 3. Gómez-González, E. and Gómez, E., "Artificial Intelligence in Medicine and Healthcare: applications, availability and societal impact", EUR 30197 EN, Publications Office of the European Union, Luxembourg, 2020. See
 - https://publications.jrc.ec.europa.eu/repository/bitstream/JRC120214/jrc120214_ai_in_medicine_and_healthcare_report-aiwatch_v50.pdf
- 4. McKinsey & Company and EIT Health "Transforming Healthcare with AI: the Impacts on Workforce and Organizations" McKinsey, 2019. See https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/transforming-healthcare-with-ai
- 5. Harwich E, Laycock K., "Thinking on its Own: AI in the NHS", the Reform Research Trust, 2018. See https://reform.uk/research/thinking-its-own-ai-nhs
- 6. Topol E., "The Topol Review: Preparing the healthcare workforce to deliver the digital future". The National Health Service (NHS), 2019 See https://topol.hee.nhs.uk/
- 7. China State Council "New Generation of Artificial Intelligence Development Plan", Document 2017, no 35, in Foundation for Law and International Affairs, https://flia.org/notice-state-council-issuing-new-generation-artificialintelligence-development-plan/.

Al and Al-mediated technologies	Specific implementations,	TAL	Soc
Algorithms for computer-aided diagnosis.	SW for debision support in (most) clinical areas:	8,9	Per
Structured reports, eHealth.	SW for improved workflow, efficiency.	B, 9	
AR/VR, advanced imaging tools	Tools for information visualization and havigation.	5.7.9	
	Image-guided surgery. Fellooperation.	4, 6, 9	
Digital pathology, Virtopsy'.	SW for automated), extensive analysis.	4-9	
Personalizad, precision medicine.	Tailorae treatments. Prediction of response.	4.9	
	'in-silicu' moderngand testing. The "digital twin"	4-8	
	Drug design.	4,6	
Apps, chatoots, dashboards, online platforms,	The 'digital opctor' (assistance for professionals and for patients).	B, 9	
Companion and social robots,	For nespitalized persons, children & the elderly,	4-9	
Big Data collection and analysis.	Epidemiology, prevention and monitoring of disease outpresks	2-9	
	Fraudidatection. Quality control, monitoring of physicians and treatments	69	
IoT, wearsibles, roHeartn	Automated clinical frealth surveillance many environment/institution.	7, 8	
	Monitoring, automated drug delivery.	7-9	
Gana oditing.	Essease treatment, prevention.	7, 2	entrówa
Merging of medical and social data. 'Social' angineoning.	Prevention of episodes with clinical relevance (e.g. suicide attempts).	5, 8 C	
	Tailored marketing (e.g. related to female cycles).	0/8	
Reading and decoding brain signals. Interaction with neural processes.	Treatment of diseases. Restoring doining ed functions.	9-8	
	Brain-machine interfaces.	5.8	
	Control of prostheses, exoskeletores. Cyborgs.	2-2	
	Neurostimulation Neuromodulation	4-8	
	Neuroprostneses (for the central nervous system)	2-5	
	Mind/reading/and/manipulation.	1-3	
Genetic tests. Population screening.	Disease tests, Direct-to-consumer tests,	4-9	9 1
Personalized, precision medicine.	Individual profiling. Personalized malecules (for treatment) at Simpossible' prices.	3-6	
Genéediting.	'Engineered humans	2,6	
	Gene-enhanced superhymans.	-2	1
	Self-experimentation medicine. Bio hacking.	2.6	
Fully autonomous Al systems	The 'digital ductor',	2-5	
	"Roboticsurgeon",	2.4	- 1
Human-animal embyps.	Organs for transplants.	2,4,5	1
	Hybrid beings/'chimera').	2.4	
The guest for immortality.	Whole-brain emulation / transgian T.	1.3	
The search for artificial file forms.	'Living machines' l'biological robots', 'biobots')	4,6	
	Military.	2.3	
Euil biohacking.	Targeting specific individuals or groups.	1/2	
Weappritation.	From 'small labs' termilitary labs.	1.2	
Bioterrorism.	From small labs'.	1, 2	New

Artificial Intelligence: A Look into Now and a Peek into the Future

Artificial Intelligence in Healthcare Globally


• The use of AI in healthcare is not new – it has been used for decades. However, the increasing capture of data electronically in clinical information systems, the increase in personal data captured through devices, sensors, imaging or genomics and the increase in computing power available – either through cloud-based computing platforms or on the phones in our pockets – is enabling a new generation of applications of AI through-out the healthcare system.

- Medical imaging/radiology were recent early adopters of AI given the substantial amount of imaging data available and the fact that early algorithm and model development was focused on images in general (e.g. LUNIT in South Korea).
- IBM Watson Health was an early entrant that initially focused on oncology via massive amounts of medical literature data and through acquisition of Truven Health Analytics and its 100 million patient records.
- In 2016 Al solutions focused on the diagnosis of diabetic retinopathy from a database of 128,000 retinal images. In neurology, Al was used in man/machine interfaces for spinal injury prostheses. In dermatology, a use of current models included an analysis of 129,000 dermatological lesions to distinguish two different skin cancers from serborrheic keratosis.
- In 2016, Mayo Clinic and AliveCor conducted a study utilizing EHR records from 2.8 million 12-lead ECGs from over 20 years of patient records and EKG readings for insights on potassium levels and correlations with T waves in ECGs.

Artificial Intelligence in Healthcare Globally

- Arterys was one of the first companies to receive U.S. FDA clearance for a cardiology application, Cardio DL, which provides automated, editable ventricle segmentations from MRI images of the heart.
- Since then there has been over 40 FDA approvals for artificial intelligence-based algorithms in medicine (as of 07/2019). The majority of the approvals have been in radiology, cardiology, oncology, and endocrinology.
- Not surprisingly, the venturee capital investment in AI solutions has exploded during the past 5 years with the locus of development activity being in the U.S. (e.g. Recursion Pharmaceuticals), China (e.g. Ping) and Israel (e.g. OrCam) and the UK (e.g. Babylon).
- China leads the world in the number of health care AI research studies (41), followed by the US and Europe (28 each).

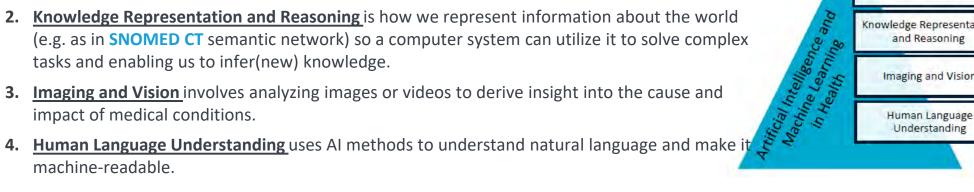
Predictive Analytics and

Data Driven Intelligence

Knowledge Representation

and Reasoning

Imaging and Vision



Case Study #10

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

- For most nations, the introduction of AI into healthcare is seen as providing a wide range of access, quality and productivity benefits during a time when healthcare costs continue to steadily increase. However, for many, the use of AI is also daunting, given the potential workforce impacts and the potential for negative unintended consequences.
- In July 2020 CSIRO and the Australian eHealth Research Centre published "Exemplars of Artificial Intelligence and Machine Learning in Healthcare"8. It provides, an overview of artificial intelligence (AI) and machine learning (ML), where SNOMED CT fits in the AI/ML space, and thirty-four case studies showcasing the use of AI/ML in healthcare in Australia.
- CSIRO divides the use of AL/ML in healthcare into four domains:
 - 1. Predictive Analytics and Data-Driven Intelligence is concerned with extracting insights from existing data (e.g. **SNOMED-CT** coded clinical data).
 - Knowledge Representation and Reasoning is how we represent information about the world (e.g. as in **SNOMED CT** semantic network) so a computer system can utilize it to solve complex tasks and enabling us to infer(new) knowledge.
 - Imaging and Vision involves analyzing images or videos to derive insight into the cause and impact of medical conditions.

Koopman, B., Bradford, D., Hansen, D. (Eds) (2020) Exemplars of Artificial Intelligence and Machine Learning in Healthcare: Improving the safety, quality, efficiency and accessibility of Australia's healthcare system. Report Ep203543. CSIRO, Australia. Version 1.0 dated July 2020 is available at aehrc.com/ai

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

- <u>Artificial Intelligence</u> depends on high quality data to either train AI models or for AI based analysis. This includes <u>clinical data</u>, genomics data, imaging, administrative data, as well as sensor and wearables data.
- In AI, there have traditionally been two schools with contrasting approaches symbolic AI and statistical AI.
 - Symbolic AI methods make use of curated medical domain knowledge (i.e. facts or rules), such as SNOMED CT.
 - <u>Statistical AI</u> takes the opposite approach; rather than predefining the knowledge and rules, it 'learns' these from the data itself by extracting patterns and insights.
 - While **SNOMED CT** encoded healthcare data can support both approaches, the full value of **SNOMED CT** (i.e. its semantic network capabilities) is realized when symbolic AI is used.
- <u>Machine Learning (ML)</u> gives computers the ability to learn without being explicitly programmed. There are two main ML tasks: classification and regression.
 - Classification uses a ML model to 'classify' data into categories; for example, classifying the type of cancer found in a pathology report into breast cancer, lung cancer and so on.
 - Regression, in contrast, uses a ML model to predict a value rather than a category. For example, predicting the length of stay for a patient given their condition. ML models learn from data, in either a supervised (i.e. answer choices are provided) or an unsupervised manner (i.e. answer choices are not provided).
- <u>Deep Learning</u> uses artificial neural networks for either classification or regression, both supervised and unsupervised.

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Predictive Analytics and Data-Driven Intelligence Case Studies (12)

- <u>Data Driven Insights from Clinical Information Systems</u> In <u>Case Study 1</u> ML uses clinical data to predict the risk of patient hospitalization or readmission. <u>Case Study 2</u> optimized elective surgery by modelling all the inter-connected departments requiring access to share surgery resources. <u>Case Study 3</u> demonstrates how real time analytics is made possible through interoperable data efforts such <u>SNOMED CT</u> and FHIR. <u>Case Study 4</u> demonstrates how analytics can be used to predict future demand for services and patient flow. <u>Case Study 5</u> showed how deteriorating patients can be identified and with an earlier intervention, prevent their condition worsening.
- <u>Insights from the Human Genome</u> <u>Case Study 6</u> uses random forest models to identify the underlying genetic causes of neurodegenerative diseases, thereby opening up new treatment avenues. <u>Case Study 7</u> uses ML to help with the laborious curation task that pathologists must perform with genetic data. <u>Case Study 8</u> uses ML to guide effective gene editing. <u>Case Study 9</u> presents a cloud architecture with ML to visualize and track the genomic fingerprint of the COVID-19 virus.
- <u>Insights from Sensors</u> Sensors have become ubiquitous in the home environment. Sensors in the home can aid elderly people to live independently in their homes for longer, which has health and economic benefits. <u>Case Study 10</u> used passive (non-wearable and non-intrusive) sensors to accurately measure how someone is coping at home and identify when they might need assistance. Where multiple people live together, <u>Case Study 11</u> used ML to identify the different individual people, from the elderly to infants. <u>Case Study 12</u> used miniature wearable sensors for early identification of infants at risk of Cerebral Palsy.

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia - One Nation's View Into Artificial Intelligence in Healthcare

Predictive Analytics and Data-Driven Intelligence Case Studies

CASE STUDY 3 HIGHLIGHTED: RE-HOSPITALIZATION RISK STRATIFICATION

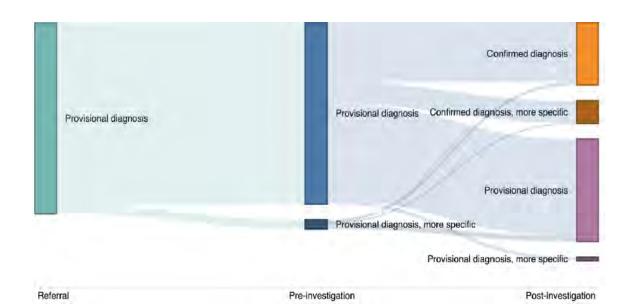
- New South Wales (NSW) Health uses the SNOMED CT-embedded Cerner clinical information system. The use of the HL7 FHIR data model and the SNOMED CT terminology has improved the interoperability of these systems, as well as for use by Al algorithms. Leveraging these standards has facilitated the deployment and scalability of real time clinical analytics and decision support applications.
- A predictive risk stratification algorithm developed by CSIRO was added to vendor Alcidion's Miya Platform. SNOMED CT data from the NSW Cerner system was sent as FHIR resources to the Alcidion Miya platform whenever certain trigger conditions were met, e.g. a new pathology report was received (see diagram on the right of this page).
- The CSIRO algorithm then calculated a risk score based on the SNOMED CT clinical data received and was displayed in the Miya platform on dashboards to support real-time decision making. This work demonstrates the potential for improved detection and management of patients at risk of readmission.

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Knowledge Representation and Reasoning Case Studies (6)

- <u>Knowledge Representation using Ontologies</u> <u>Case Study 13</u> describes the "Snorocket" reasoner, software that uses the Dresden algorithm, to rapidly draws inferences and create new knowledge using the <u>SNOMED CT</u> medical ontology.
- Extending Medical Ontologies One key advantage of the formal logic of ontologies like SNOMED CT and reasoners like Snorocket is that it can be extended to support new domains (e.g. medications). Case Study 14, shows how the Australian Medicines Terminology (AMT) and reasoners can be extended to provide support for medications, including numeric values such as dosages. AMT is included in the Australian edition of SNOMED CT. Case Study 15 solves the problem of keeping medication ontologies up-to-date by analyzing medication lists and automatically generating the appropriate medications knowledge in the AMT medical ontology. Case Study 16, shows how new medical knowledge can be added through 'post-coordination', whereby new concepts can easily be defined using the existing formal logic of SNOMED CT.
- How Knowledge Representation Supports Analytics Knowledge about how to use the SNOMED CT ontology, including its rules and properties, supports the use of the ontology in many applications including data analytics, search engines and NLP. The representation of knowledge in this way is a core part of AI. Case Study 17 demonstrates Pathling, an advanced analytics service that exploits standardized SNOMED CT medical data to provide APIs that enable data visualization, dashboard analytics, patient cohort selection and data preparation services.
- <u>Integrating AI into Clinical Workflow</u> <u>Case Study 18</u> presents FORTE, a FHIR-based Workflow Platform for integrating AI into a Radiology Clinic. This provides a means of integrating automated methods into an existing clinical workflow.


Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Knowledge Representation and Reasoning Case Studies

CASE STUDY 17 HIGHLIGHTED: ADVANCED ANALYTICS OF GENOMIC PHENOTYPE DATA

- Increasingly more data is being collected using **SNOMED CT** and shared using FHIR. This provides an opportunity to use these two standards to build advanced analytics tools on top of this data. Pathling, is an advanced analytics service that exploits this standardized health data to provide APIs that enable data visualization, analytics dashboards, patient cohort selection and data preparation services.
- Pathling understands the FHIR data model and it can integrate with a FHIR terminology server to enable the use of the description logic underpinning SNOMED CT.
- Pathling was recently used to perform an advanced analysis of genomic phenotype data which was collected using FHIR and SNOMED CT. In this set of data, differential diagnoses were collected at stages through the patient journey using SNOMED CT. As more testing was undertaken (including whole genome sequencing) Pathling was able to use the SNOMED CT semantics to understand the change in diagnosis from a general diagnosis to a more specific diagnosis, or potentially to a completely unrelated diagnosis (e.g. see the Sankey diagram generated from the data to the right).

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia - One Nation's View Into Artificial Intelligence in Healthcare

Human Language Understanding Case Studies (6)

- <u>Natural Language Processing</u> There are two main automated approaches to Natural Language Processing (NLP): rule-based and ML based. <u>Case Study 19</u> is an example of how rule and deep learning approaches can be combined to extract valuable <u>SNOMED CT</u>-encoded information on cancer from a range of free text medical documents. <u>Case Studies 20 and 21</u> show how machine-learning based NLP and <u>SNOMED CT</u> can be integrated into hospital workflow to detect missed limb fractures and to identify patients with antibiotic resistant infections. <u>Case Study 23</u> shows how NLP can be used to automatically quantify the semantic similarity between sentences in medical literature for evidence-based medicine.
- <u>Information Retrieval</u> Case Study 22 demonstrates how a range of machine-learning based information retrieval methods can be used to help produce better systematic reviews of the literature.
- <u>Conversational Agents</u> With the rise of social and communication technologies, conversational agents, or chatbots, provide a means for users to become engaged in conversation, continuing and progressing the dialogue in the same way human-to-human interaction occurs. Some examples where chatbots have been implemented include monitoring speech degeneration in patients with Parkinson's Disease, disease self-management, encouraging behaviour change, and provision of health education. <u>Case Study 24</u> presents a project to develop a chatbot to assist patients in decision making for the provision of genomic information.

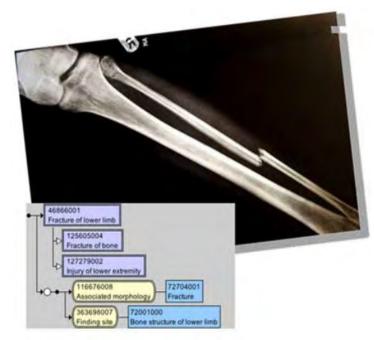
Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Human Language Understanding Case Studies

CASE STUDY 19 HIGHLIGHTED – AUTOMATING CANCER REGISTRY TASKS TO ENHANCE CLINICAL DATA QUALITY

- Information about cancers are gathered from a variety of different modalities including imaging and from biopsy and resections and then typically written into a narrative report and sent to the treating clinician. CSIRO has worked with Cancer Alliance Queensland to extract information from pathology and radiology reports and death certificates, using AI technologies, for a variety of reporting purposes including cancer notifications, cancer staging and synoptic reporting.
- The AEHRC Medtex technology uses a mix of symbolic and statistical AI methods to process the clinical reports. A natural language
 processing (NLP) engine is used to break the discourse of the text into statements and then features are extracted from each statement.
 The meaning of these features is then inferred through using ML models, which are trained from ground truth (human judgements) data using deep neural networks. For some features a formal logic rule-based approach using the relationships encoded in SNOMED CT is
 utilized.
- The software now supports the extraction of over 20 different clinical features from the text of the histopathology reports covering a range of cancers. Studies have shown that the accuracy of the AI algorithms is very high. The algorithms have a 96% recall and precision for classifying notifiable cancers. Detailed extraction and coding of specific cancer notification items include basis of diagnosis, histological type and grade, primary site and laterality. Visual explanations and feedback from AI decisions are supporting clinical coders in their cancer abstraction task.


Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Human Language Understanding Case Studies

CASE STUDY 20 HIGHLIGHTED: CHECKING RADIOLOGY REPORTS TO PREVENT MISSED FRACTURES

- Patients admitted to a hospital emergency department (ED) with a suspected fracture are X-rayed, treated and then discharged. However, when the X-ray report is later finalized by a radiologist, ED specialists have to manually match the report from the radiologist with the patient's discharge diagnosis to ensure that subtle fractures were not missed. The manual checking process is an essential but laborious task.
- The Medtex system (See Case Study 19) was used to perform this check automatically and then flag any potential inconsistencies. The solution uses NLP to extract features from the reports. ML models including support vector machines and deep neural networks are then used to find associations between features in the radiology report. **SNOMED CT** clinical terminology concepts are used as features to reliably identify limb fractures and other abnormalities documented in radiology reports (see diagram to right of this page).
- Medtex automatically matches fractures identified in the radiology reports with patients' ED discharge diagnosis to provide decision support for the current manual checking process. Studies have shown that this checking can be done with high precision and recall across three different hospital ED settings. By fast-tracking diagnoses and streamlining test result reviews, emergency departments can save time and deliver improved patient outcomes.

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Human Language Understanding Case Studies

CASE STUDY 21 HIGHLIGHTED: TACKLING ANTIMICROBIAL RESISTANCE WITH TEST RESULT REVIEW

- Antibiotic overuse contributes to antimicrobial resistance, which could cost the global economy US\$100 trillion by 2050 and cause up to
 10 million deaths per year. Patients with suspected infections are tested for the presence of bacterial organisms with antibiotic
 resistance. These test results are then manually reviewed to ensure patient's infections are not resistant to the antibiotics they are taking.
 This project aims to automate this process in two parts: 1) streamline Emergency Department microbiology test result review to identify
 bacterial organisms and their antibiotic sensitivities; and 2) match these with antibiotic prescriptions extracted from Emergency
 Department discharge letters.
- Our NLP methods extract antibiotic prescriptions detailed in discharge letters. Then we parse microbiology reports for bacterial organisms and antibiotic sensitivities. Given these two sources, we exploit the semantics in **SNOMED CT** to match antibiotic prescriptions (e.g. generic and trade names) with the bacteria's sensitivities for a given antibiotic class. This provides clinical decision support to identify patients that have been prescribed an antibiotic for which the bacterial organisms are resistant. The patient can then be contacted for follow-up treatment, such as a change of antibiotic treatment.
- An example scenario is when the discharge letter notes that a patient was prescribed with "ampicillin". When the microbiology test result returns, it notes the bacteria present was "Escherichia-coli" (E. coli): a bacterium known to be resistant to ampicillin. The system would pick this up immediately and alert the clinician, enabling the patient to be contacted and provided with a more appropriate antibiotic.

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

Imaging and Vision (10)

- <u>Medical Image Analysis</u> Medical image analysis employs a range of supervised and unsupervised AI and ML techniques to extract clinically relevant information or knowledge from medical images.
- <u>Using Imaging for Early Detection of Abnormal Development</u> Case Study 25 is a cloud-based 'Developing Brains' toolbox using ML to analyze MRI scans of very preterm-born infants to identify biomarkers that predict later motor, neurological and neurobehavioral problems. Case Study 26 describes AssessCP, a clinical support tool for pediatric brain injury.
- <u>Image Guided Treatment and Disease Monitoring</u> Case Study 27 shows how software that integrates with MRI machines can be used to quantify the changes in cartilage indicating osteoarthritis this guides surgery such as joint replacements. Case Study 28 uses MRI images to help guide the delivery of radiotherapy for prostate cancer. Case Study 29 uses PET imaging to generate quantified measures for risk of Alzheimer's Disease. In Case Study 30, deep learning methods are used on ocular images for automated detection of macular degeneration that can cause blindness. Case Study 31 uses image processing for segmentation of flecks in the eyes to track Stargardt disease progression.
- <u>AI-Based Telehealth</u>- Case Study 32 presents a tele-oral care system that provides AI-driven oral mucosal disease classification and specialist-based clinical decision support. Case Study 33 provides face detection and automated classification of patient emotion from video for tele-health.
- <u>Robotics</u> Case Study 34 shows how socially-assistive robots are used to supplement traditional therapy and education for children with autism.

Artificial Intelligence: A Look into Now and a Peek into the Future

Australia – One Nation's View Into Artificial Intelligence in Healthcare

IN SUMMARY

- Artificial Intelligence, including Machine Learning and Deep Learning is rapidly being adopted in healthcare systems around the world, as a way to achieve access, quality and productivity gains.
- **SNOMED CT** is uniquely positioned to support the expansion of AI in:
 - 1. Predictive Analytics and Data-Driven Intelligence (i.e. data driven insights from clinical information systems)
 - 2. Knowledge Representation and Reasoning (i.e. knowledge representation to support analytics and research)
 - 3. Human Language Understanding (i.e. natural language processing).
- Looking forward, the full power of **SNOMED CT** comes from using its semantic network, which is perfectly positioned to support symbolic artificial intelligence opportunities in healthcare.

Experience the value of SNOMED CT

Read the full report and visit the value platform at:

snomed.org/value

